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Abstract. This paper introduces a new method for data domain de-
scription, inspired by the Support Vector Machine by V.Vapnik, called
the Support Vector Domain Description (SVDD). This method computes
a sphere shaped decision boundary with minimal volume around a set of
objects. This data description can be used for novelty or outlier detec-
tion. It contains support vectors describing the sphere boundary and it
has the possibility of obtaining higher order boundary descriptions with-
out much extra computational cost. By using the di�erent kernels this
SVDD can obtain more 
exible and more accurate data descriptions. The
error of the �rst kind, the fraction of the training objects which will be
rejected, can be estimated immediately from the description.

1. Introduction

In this paper we address an extension of the classi�cation problem, the data
domain description problem (also called One-class Classi�cation). In domain
description the task is not to distinguish between classes of objects like in clas-
si�cation problems or to produce a desired outcome for each input object like
in regression problems, but to give a description of a set of objects. This de-
scription should be able to distinguish between the class of objects represented
by the training set, and all other possible objects in the object space. The
data domain description is used for outlier detection or novelty detection, the
detection of objects which di�er signi�cantly from the given data set.

Di�erent methods for data domain description or outlier detection have
been developed. When an underlying statistical law for the outlying patterns
is assumed, this underlying distribution should be estimated (see for instance
[1]). When nothing about the outlier distribution can be assumed (or if an
insu�cient number of outlier examples is available), only a description of (the
boundary of) the target class can be made. Most often a probability density
of the available data is estimated and new test objects which are under some
density threshold will be rejected (see [3]).
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In this paper a new method for data domain description is presented. The
method is inspired by the Support Vector Machines by V. Vapnik ([4]). Here
the sphere with minimal volume (or minimal radius) containing all objects is
found. This idea was already used in [2], but there it was just used to �nd
an estimate of the VC-dimension of a hyperplane and not a description for a
data set. We give the theoretical background of the method in section 2. In
sections 3. and 4. we focus on choices for the free parameters and look at some
characteristics of the methods. We give conclusions in section 5.

2. Theory

Of a data set containing N data objects, fxi; i = 1; ::; Ng, a description is
required. We try to �nd the sphere, described by center a and radius R, with
minimum radius R and which contains all (or most of) the data objects. Be-
cause this description may become very sensitive to the most outlying objects
in the target data set, we allow for some data points outside the sphere. Anal-
ogous to [4] we introduce slack variables �i and we obtain the constraints:

(xi � a)(xi � a)T � R2 + �i

�i � 0 (1)

We minimize the radius R of the sphere and the size of the slack variables:

F (R; a; �i) = R2 + C
X

i

�i (2)

for given constant C, which gives the trade-o� between the two error terms:
volume of the sphere and the number of target objects rejected.

Incorporating the constraints in (2), we construct the Lagrangian:

L(R; a; �i; �i) = R2+C
X

i

�i�
X

i

�ifR
2+�i�(x2i �2axi+a2)g�

X

i


i�i (3)

with Lagrange multipliers �i � 0 and 
i � 0. Setting the partial derivatives to
zero, new constraints are obtained:

X

i

�i = 1

a =

P
i �ixiP
i �i

=
X

i

�ixi

0 � �i � C (4)

Resubstituting gives to maximize with respect to �i:

L =
X

i

�i(xi � xi)�
X

i;j

�i�j(xi � xj) (5)
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with constraints (4).
To test if a new object z is within the sphere, the distance to the center of

the sphere has to be calculated. A test object z is accepted when this distance
is smaller than the radius:

(z � a)(z � a)T = (z � z)� 2
X

i

�i(z � xi) +
X

i;j

�i�j(xi � xj) � R2 (6)

For a small set of objects in the training set the equality in equation (6)
will be satis�ed. These objects have �i 6= 0 and are called the support objects.
When C < 1 support objects with �i = C will occur. These objects are outside
the sphere and are considered outliers. The rest of the training data is within
the description. This method of making a data domain description will be
called the Support Vector Domain Description (SVDD).

3. Generalizing to other kernels

Normally, data is not spherical distributed, even when the most outlying objects
are ignored. To make a more 
exible method, the object vectors x can be
transformed to a higher dimensional feature space. As explained in [4] the
inner products in equations 6 and 5 can be substituted by a kernel function
K(xi; xj), when this kernel satis�es Mercer theorem. The problem of �nding a
data domain description is now given by:

L =
X

i

�iK(xi; xi)�
X

i;j

�i�jK(xi; xj) (7)

with constraints given by equation (4). A test object z is accepted when:

K(z; z)� 2
X

i

�iK(z; xi) +
X

i;j

�i�jK(xi; xj) � R2 (8)

Taking di�erent kernel functions K's result in other types of feature spaces and
thus on di�erently shaped domain descriptions. This can make the description
more 
exible and more accurate than the very rigid spherical shape.

3.1. Kernel choices

When a polynomial kernel is used, K(xi; xj) = (xi � xj + 1)d, with d is the
degree of the polynomial, distances between objects will be enlarged for larger
degrees d. The SVDD is completely adjusted to the objects which are most
remote. This kernel results in a very large and sparse descriptions.

To suppress the growing distances for larger feature spaces, a Gaussian
kernel is more appropriate:

K(xi; xj) = exp(�(xi � xj)
2=s2) (9)

The free parameter s gives the width, or spread, of the kernel.
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For this Gaussian kernel is K(xi; xi) � 1 and equation (7) boils down to:

L = 1�
X

i

�i
2 �
X

i6=j

�i�jK(xi; xj) (10)

To �nd a maximum for equation (10) with constraints (4) two con
icting
objectives have to be met:

1. the more �i's are unequal to zero, the smaller each individual �i can get
and the smaller the factor

P
i �i

2. This means an increase of the number
of support vectors.

2. the more �i's are equal to zero, the less cross products �i�j contribute
in the factor

P
i 6=j �i�jK(xi; xj) which means a decrease of the number

of support vectors.

This tradeo� between the sizes of �i and the cross products depends on the
weighting factors K(xi; xj) and thus on the choice of the free parameter s.

Figure 1: Distance to the center of the hypersphere, mapped back on the input
space for three di�erent values for s using a Gaussian kernel. The darker the
color, the smaller the distance. The white dashed line indicates the surface of
the hypersphere. The small circles indicate the support objects.

In �gure 1 an arti�cial data set is shown with a Support vector domain
description using a Gaussian kernel for three values of s. The data set contains
20 objects from a two dimensional mixture of two Gaussians. The gray value
indicates the distance to the center of the sphere in the feature space. The
white line crossing the support vectors (indicated by the small circles), is the
boundary of the description. The width parameter s ranges from very small
(s = 0:5 in the left �gure) to large (s = 12:5 in the right �gure). Note that
the number of support vectors is decreasing and that the description becomes
more sphere-like.

We can derive explicit solutions for equation (10) for the two di�erent ex-
treme situations, one for very small values and one for very large values for s.
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For very small s is K(xi; xj) ' 0; i 6= j and L is maximized when �i = 1=N .
This is similar to the Parzen density estimation, where each object supports a
kernel. For very large s is K(xi; xj) ' 1 and L is maximized when all �i = 0
except for one �j = 1. This solution is almost reached in the right subplot
of �gure 1. When a Taylor expansion of the Gaussian kernel is made, it can
easily be shown that equation (7) becomes equation (5) (up to a scaling factor
and an o�set). In the case of moderate values of s (middle plot in �gure 1) all
values between 0 and 1 do exist for the K(xi; xj) and an edited Parzen density
estimator is obtained.

The parameter C gives the upper boundary for the parameters �i (see
equation (4)) and indicates how severely outlying objects are punished. BecauseP

i �i = 1 and 0 � �i � 1, C should be 1=N � C � 1. For C < 1=N no solution
can be found because then the constraint

P
i �i = 1 can never be met, while

for C > 1 one can always �nd the solution (�i's are always less or equal to 1)
which includes all training data.

Objects xi which have a maximal �i, �i = C, are special support objects.
They are not lying on the boundary of the sphere but are outside the descrip-
tion. By restricting the parameter C, the cost of being outside the sphere is
not very large and a greater fraction of the objects is allowed to be outside the
sphere. This makes the sphere description less sensitive to noise in the remote
objects but may also remove valuable objects. Two examples of these objects
are shown in the right �gure of �gure 1.

4. Error estimation

To study the generalization or the over�tting characteristics of the SVDD, we
have to get an indication of (1) the number of target patterns that will be
rejected (errors of the �rst kind) and (2) of the number of outlying patterns
that will be accepted (errors of the second kind).

We can estimate the error of the �rst kind by applying the leave-one-out
method on the training set containing the target class (see also [4]). When
leaving out an object from the training set which is no support object, the
original description is found. When a support object is left out, the optimal
sphere description can be made smaller and this left-out object will then be
rejected. Thus the error can be estimated by:

E[P (error)] =
#SV

N
(11)

where #SV is the number of support vectors.
Using a Gaussian kernel, we can regulate the number of support vectors by

changing the width parameter s and therefore also the error of the �rst kind.
When the number of support vectors is too large, we have to increase s, while
when the number is too low, we have to decrease s. This guarantees that the
width parameter in the SVDD is adapted for the problem at hand given the
error.
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The chance that outlying objects will be accepted by the description, the
error of the second kind, cannot be estimated by this measure. We assumed
only a good description of the target class in the form of a training set is
available. All other patterns are outliers per de�nition. For an estimate of
the error of the second kind assumptions about the outlying objects should be
made.

5. Conclusions

In this paper we propose a data description which only depends on a few target
objects, the support objects. In this Support Vector Data Description, SVDD,
test objects only have to be compared with the support objects by an inner
product or a more general kernel function. By adapting the kernel function,
this method becomes more 
exible than just a sphere in the input space. We
focussed on a Gaussian kernel, which seems to work very well.

To become robust against outlying objects in the training set, the SVDD
allows for some target objects not included in the sphere description. An extra
parameter C gives the trade-o� between the number of errors made on the
training set and the size of the sphere description. In practice the size of this
parameter is not very crucial for �nding a good solution.

The Gaussian kernel in the SVDD has another free parameter, the width of
the kernel s. Di�erent extremes for this width parameter result in more or less

exible descriptions. For very small values for s a Parzen density estimation
is obtained where all target objects become support objects. For very large
values of s just one prototype for the complete data set is used and almost the
complete training set can be disregarded. Applying a moderate value for the
width parameter, an edited Parzen estimation is obtained.

In the SVDD method the error on the target class can be estimated im-
mediately by calculating the fraction of target objects which become support
objects. Setting the error on the training set beforehand, the value of s can
be set to match the allowed accuracy on the data set at hand. This makes the
SVDD both a 
exible and a fast method for describing a data set.
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