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Abstract. Support Vector Regression (SVR) is a kernel based regres-
sion method capable of implementing a variety of regularisation tech-
niques. Implementation of SVR usually follows a dual optimisation tech-
nique which includes Vapnik's �-insensitive zone. The number of terms
in the resulting SVR approximation function is dependent on the size
of this zone, but improving sparsity by increasing the size of this zone
adversely e�ects precision. We describe an e�cient method of formulat-
ing SVR without an �-insensitive zone, that selects a minimum support
set for the terms of the approximator. Sparsity can then be traded for
increased training error and/or decreased SV regularisation.

1. Introduction

Support vector machine (SVM) training requires constrained quadratic opti-
misation in as many variables as there are training vectors. Support vector
regression (SVR), however, requires twice this number to accommodate Vap-
nik's �-insensitive loss function [10]. These numbers can lead to substantial
computational problems for large data sets, in both training and prediction
phase.

E�orts have been made to reduce the computational requirements during
training. These include techniques such as data chunking, sequential minimal
optimisation, and the Kernel Adatron [7],[9],[6]. These methods are based on
the dual formulation of the SVM, which for classi�cation has the heuristically
appealing property that the support vectors chosen are those that de�ne the
optimal boundary [10]. Support vectors form the support set of the prediction
function, but their number is often far in excess of the minimum required for
the solution's basis.

Computational requirements in the prediction mode depend on the number
of support vectors selected from the training set. Situations in both SVM
classi�cation and SVR which lead to excessive numbers of support vectors
are related to the amount of noise in the training data, and the amount of
regularisation. This problem is acute in regression problems when the size
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of the �-insensitive zone is reduced to zero. In this case all training vectors
are included in the support set. To circumvent this, some methods have been
suggested for reducing the set as an intermediate stage between training and
prediction [5],[2].

The dual formulation is normally chosen because it is computationally
cheaper than solving the primal problem. It is also automatically derived in
terms of Lagrange multipliers and dot products of training vectors only. This
dot product formulation is predisposed to the use of kernel functions to extend
the linear foundations of SVM to nonlinear problems. The dot product substi-
tution can also be made in the primal formulation [4], [8], leading to a solution
which is not reliant on Kuhn-Tucker constraint conditions [10], to select the
support set.

We present an e�cient method for SVR without an �-insensitive zone and
incorporating independent control of sparsity. The resulting formulation yields
a 
exible hybrid of basis pursuit [3] and Vapnik's SVR. In section 2.1. SVR and
sparsity controlled SVR are summarised and in section 2.2. this is reformulated
to remove general linear constraints. Section 3. demonstrates computational
requirements by example.

2. Support Vector Regression Optimisation

SVR is related to SV classi�cation by simply replacing the loss term associated
with training vectors not within the optimal boundaries with one for vectors
outside an error insensitive zone, of width, �. The objective of SVR is to
minimise the following cost function.

L(~w; b) = jj~wjj2 + CF� (yi � (~w:xi + b)) (1)

The function, F�, is conventionally the �-insensitive loss function, F�(e) = jej�
�; for jej > �, and 0 otherwise. To accommodate this loss function, equation
1 can be formulated by de�ning errors as slack variables of linear constraints.
Here, least squares error cost will be used.

L(~w; b) = jj~wjj2 + C(jj~�jj2 + jj~��i jj
2) (2)

subject to ~w:~xi + b � yi � �� �i

~w:~xi + b � yi + �+ ��i

�i; �
�

i � 0; for i = 1; : : : ; l:

By introducing Lagrange multipliers and substituting derivatives, the dual for-
mulation in terms of Lagrange multipliers and training vectors is given by equa-
tion 3. The dual optimisation of SVR has 2l variables to be maximised in the
quadratic objective, 2l box constraints and one linear equality constraint. The
dot products,< xi; xj >, may be substituted for kernel functions, K(xi; xj)[10].

L(~�; ~��) = �
1

2

Pl

i;j=1
(�i � ��i )(�j � ��j ) < ~xi; ~xj > +

Pl

i=1
(��i � �i)yi
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� �
Pl

i=1
�i + ��i �

Pl

i=1

�2
i � ��2i
C

(3)

subject to
Pl

i=1
�i � ��i = 0

�i; �
�

i � 0 for i = 1; : : : ; l

The dual optimisation sets the non-negative Lagrange multipliers,�; ��, to zero
if their corresponding constraints are not a limiting factor in the optimisation.
Sparsity is thus governed by the proportion of training vectors within the �-
insensitive zone.

2.1. Sparsity Controlled SVR (SCSVR)

The derivation of equation 3 shows that the weights, ~w can be represented
in terms of Lagrange multipliers and dot products of input vectors only. By
incorporating this weight substitution directly into the primal form, without the
Lagrangian formulation, the following cost function can be constructed which
is suitable for kernel function substitution [4], [8]. The formulation includes an
extra objective term D

P
i j�i +��i j, which encourages sparsity in the solution

by selecting one of the multiple solutions with fewest multipliers, �; ��. The
error loss function values, n 2 f1; 2g, are suitable for quadratic programming.

L(~�; ~��; b) =
Pl

i;j=1
(�i � ��i )(�j � ��j ) < ~xi; ~xj > +C

Pl

i=1
�ni

+ D
Pl

i=1
�i + ��i

subject to
PL

j=1
(�j � ��j ) < ~xj; ~xi > +b � yi � �� �i

PL

j=1
(�j � ��j ) < ~xj; ~xi > +b � yi + �+ �i

�i; �
�

i ; �i � 0 for i = 1; : : : ; l

2.2. SCSVR without �-insensitivity

If �-insensitivity is not required and least squares error loss is chosen, the above
equation can be formulated without general linear constraints, except for simple
bounds, �; �� � 0. The box constraints (equation 5) on �, �� are required for
least modulus (l1) minimisation of �; ��. If an l2 norm is minimised, the
optimisation does not require any constraints, but sparsity in the solution is
lost. The cost function for minimising the l1 norm of �; �� is,

L(~�; ��; b) = D
Pl

i=1
j�i + ��i j+

Pl

i;j=1
(�i � ��i )(�j � ��j ) < ~xi; ~xj >

+ C
Pl

i=1

�
yi �

hPl

i=1
(�i � ��i ) < (~xi; ~xi > +b

i�2
(4)

subject to �i; �
�

i
� 0 for i = 1; : : : ; l (5)

This formulation can be solved using simple quadratic programming techniques
for bounded variables. Alternatively, an iterative method of solving this prob-
lem, such as that of [1], [6] can be applied.
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Figure 1: SCSVR with Polynomial
Kernel, (1 + ~x:~y)3, for Polynomial
function f(x) = 0:02x3 + 0:05x2 �
x + e, e =Gaussian white noise (� =
1). 0|support vectors, solid line|
estimation, dashed line|true value.
Training parameters are as for table
1.
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Figure 2: SCSVR with Gaussian ker-
nel, exp(j~x � ~yj2), for sinc function
f(x) = sinc(x)+e, e =Gaussian white
noise (� = 0:1). 0|support vectors,
solid line|estimation, dashed line|
true value. Training parameters are
as for table 1.

3. Performance

Comparing the three formulations of SVR, dual, sparsity controlled (SCSVR�),
sparsity controlled SVR without � (SCSVR), the training requirements vary
considerably (table 1). SCSVR can be seen to have at least comparable train-
ing requirements to the dual method. SCSVR� has the largest, owing to the
large number of constraint calculations involved. The emphasis in comparing
computational requirements for training is between SCSVR� and SCSVR.

The sparsity controlled methods both produce approximation functions
which contain less support vectors than the dual methods. Computational
requirements during prediction are directly proportional to the number of sup-
port vectors selected. In the polynomial case the number is limited by the
dimension of the kernel feature space. The Boston housing benchmark was
used to further illustrate how sparsity control can decrease training and pre-
diction calculations while maintaining predictive accuracy. All three formula-
tions were implemented using the same NAG quadratic optimisation function
in MATLAB, rather than the standard optimisation toolbox.

4. Conclusions

SCSVR attempts to minimise the number of support vectors selected during
training without necessarily e�ecting precision. The combination of sparse ap-
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Polynomial function, Polynomial Kernel, (1 + ~x:~y)3,
Method Training M
ops Support Vectors Error
dual�=0 17 101 0.81
dual�=1 5 26 1.1

SCSV R�=0 50 4 0.81
SCSVR 1.5 3 0.81

sinc function, Gaussian Kernel, exp(j~x� ~yj2),
Method Training M
ops Support Vectors error
dual�=0:1 39 60 0.35
SCSVR 25 13 0.341

Table 1: Training requirements for SVR formulations for polynomial and sinc
functions. (C = 10, � = 0, D = 10�3; 1 for polynomial and sinc examples
respectively). Training calculations are in 
ops�106. The polynomial data set
comprises of 101 vectors, and the sinc, 201. The error value is the sum squared
di�erence to the noise free function.

Boston Housing Benchmark, Gaussian Kernel, exp(0:2j~x� ~yj2)
Method Training M
ops Support Vectors test error (MSE)
dual�=0:1 246 88 14.0

SCSVR, D=1 195 29 9.1
SCSVR, D=20 66 13 11.5

Table 2: Comparison of # support vectors and prediction accuracy for multi-
dimensional regression data (C = 1000P. Training calculations are in 
ops
�106. The training data set comprises of 406 vectors. The error value is the
mean squared di�erence to 100 test examples.

proximation and SVR allows the unappealing properties of �-insensitivity to
be removed from SVR. From the sparse approximation point of view, the hy-
brid of SVR and basis pursuit provides extra control of regularisation. The
formulation of SCSVR without large numbers of constraints, can also lessen
the computational requirements during training below those of the dual formu-
lation. Predictive accuracy of SCSVR compares well with �-insensitive SVR in
these examples, this is probably down to the fact that SCSVR improves the
empirical risk because the loss function utilises all of the training data. Further
work is required to judge SCSVR performance with other types of data and
noise, and also to investigate how well it can be optimised computationally.
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