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The problem of binary factorization of complex patterns in recurrent Hopfield-
like neural network was studied both theoretically and by means of computer
simulation. The number and sparseness of factors mixed in patterns crucially
determines the ability of an autoassociator to perform a factorization. Basing on
experimental data on memory and learning one may suggest, that there exists a
neural system of intermediate storage of information, which fulfills the function
of binary factorization of the incoming polysensory information for its further
effective storage in the form of elementary associatively bound factors. We
suppose that field CA3 of the hippocampus possessing all properties of the
autoassociative memory performs such function. This functional idea could be
fruitfully applied to various memory related tasks (e.g. spatial navigation) and
lead to some critical experiments.

Introduction

We define factorization as decomposition of a complex vector signal into a set of
simple factors based on correlation between components of the former. The linear
factorization in vector space (for example by means of Principal Component Analysis)
is the simplest form of such decomposition.

The nonlinear case of factorization is obviously more sophisticated and can not be
solved analytically. One particular form of nonlinear factorization is a binary one,
where a complex vector signal (pattern) has a form of a logical sum of weighted

binary factorsX= ||—jla' f' . This case of factorization allows an interpretation in terms

of attractor neural networks with binary activity. The central idea is that network can
easily learn cross-correlations that underlie in incoming complex pattern using
Hebbian learning rule. Hebbian rule forms connections matrix as a covariance matrix
for the set of learned patterns. Neurons that tend to fire together (represent one
common factor) will be more correlated and corresponding connection strengths will
be larger in respect to those neurons that belong to different factors. Hence, each
group of neurons that forms a factor might correspond to the attractor of the network
dynamics. Thus, in order to perform factorization one has to train the network with a
set of complex patterns using correlational Hebbian learning rule. The procedure of
factors extraction could be based on the search of attractors of the network dynamics
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that might correspond to the factors. This paper is devoted to investigation of
conditions under which factors actually form attractors in sparsely encoded Hopfield-
like neural network [9] by means of computer simulation.

Model description

Detailed theoretical and computational analysis of sparsely encoded Hopfield-
like neural networks was given elsewhere [1,2,6,7]. In contrast to these works we
trained the network by set of complex patterns (nonlinear combinations of factors).
In this sense usual learning procedure corresponds to the case of purely presented
factors.

Thus, on the learning stage, fully connected networkl dfinary neurons was

trained by a set ofl patterns of the formx m=|t|a|mf' , wheref! DB'I\)l (PN is
=1

maintained constant) atefactors anda™ O Btf are factor score§ Both factors

and factor scores were chosen statistically independent. pleaad p; are

sparsenesses (ratio of number of active elements to the total number of elements) of
factors with respect to neurons and patterns with respect to factors. In a limit
p; — O patterns become pure factors that correspond to ordinary Hopfield case.

Connections matrix J was formed using the correlational Hebbian rule:

M
3 :—i\z_l(xim SAXTH(XP —o(X™) 1%, ; =0, (1)

N
where o{ XM} = Z X{™I'N is the total activity of the pattern. As increases the
1=

value ofq approaches the expectatiéh{ X"} =1-(1- pp; )-. Theoretical analysis

showed that bias taken equal to expectation of remembered pattern activity provides
the best separation between “false” and “true” modes (see below) on the first step of
the evolution. Such form of bias corresponds to the biologically plausible global
inhibition being proportional to overall neuron activity.

On the recall stage, on presentation of an initial pattern, the network was let to
evolve until it stabilized in some attractor. The evolution of the network’s state is
determined by the synchronous dynamics equation for acvitytime:

X (t+1) =O(h (1) - T(), X, (0) = . i =1,...N, )
N
where  h(t) =S J; X (1) 3)
]Z:l |

is synaptic excitation,® -step function, andT(t) — activation threshold. The

' BY ={X|X 0{03, P{X; =3 = p Oi =L...,N}
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thresholdT(t) is chosen at each time step in such a way that sparseness of the
network activity is kept constant and equaptdhus, on each step=pN ,winners”
(neurons with greatest synaptic excitation) are chosen and only they are active on the
next step. This procedure ensures that attractors are only point and cyclic of length
two. The stable pattern (point attractor) or first pattern of cyclic attractor was taken
as a resulting pattern of the recall process. In order to check whether factors do form
attractors we took pure factors as initial network states.

Main parameters

For the analysis of information properties of a network some integral parameters
are introduced. The recall quality is measured by overlap between initial and

. N .
resulting vectorsm' = m(X'“,Xf)=%ZXi'”Xif . As a measure of the relative
1=

informational loading we use a=Lh(p)/N, where
h(p) =-plog, p— (- p)log,(1- p)is the Shannon function. The informational
capacity of the network g, , which is a maximuna , for which stable states in the
vicinities of stored factors still exist. If we define two more parametersLp; —

complexityof patterns (average number of active factors in pattern)&ad\p; ,

we shall obtain five parameters of the netwdtkM, C, S, pThen
a=Ch(p)/S (4).

The results of the simulation

In order to analyze the dependency @i on parameters of the network the
model was simulated on the computer. Calculations were performétfifom 200
to 4000, forp= 0.5, 0.1, 0.02. The program generated random factors, mixed them
randomly (regarding sparsenespesnd p; ) into the set oM patterns, trained the
net with this set, and tested the net with factors. On the basis of gathered statistics
the distribution of final overlapssnf was plotted. This distribution has two distinct
modes: form’ = I“true”) and mf = 0(“false”), that correspond to stabilization of

the network in true and spurious attractor respectively. The threshold nélye
used for separation was determined as a point of a minimum in case of balanced
distribution between two modes. The probability of existence of stable attractors in

the vicinities of factors was estimated by the probability thmelt belongs to the
Jtrue“ mode: P=P{m" >m/ }. It turned out, that a§l increases these two modes
tend to separate better, basins of attraction enhanc® amcreases, saturating at
someM ., (=10%/ p; ). The obtained values & corresponding to different were
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_ 05
approximated by the following functioR(e) =1/(1+ exp(‘%)) [Fig.1], where

al? - informational capacity of the network with reliability of 0.5 (both modes are
equally expressed).
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Figure 1. Approximated graph of probabil®that final overlap is close to 1.
(a:N=400, b:N=800,c:N=1200, d:N=2200; p=0.1,S=20)
As N increases the curve of the functi®{e approaches step-like function. A

point at which the drop occurs was takencgs. As criterion of the drop we took
the levelP=0.8, i.e. &, =ao°. As N increases values af, also increase and
saturate at somid,,, the biggerS (more complex pattern), the bigddr,. For
each value ofs from 10 to 300 the asymptotic value of, was determined for
N > Nggt. Using (4) we obtained respective values@f . For fixedS andp the

point C,a ) moves along the beam and ldt> N, reaches C, ,«,, ). For eacltp
such critical points form inQG,« )-plane a curve that separates phases of possibility
and impossibility of factorization. AS — o the critical curve approaches abscise,
and one may estimate the val@g, . - maximum complexity of patterns, for which

factorization is still possible. As sparsenpsanishesC,,, increases [Fig.2].
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Figure 2. Critical curves imx -C plane forp=0.1 andp=0.5.
(The former is drawn taking into account that saturatiol s/not reached)

Neurophysiological application

Long before occurrence of modern functional models of a hippocampus [4,5,8,12]
Marr has developed conceptual model, which functional idea is close to our idea of
factorization. Marr proposed that the hippocampus plays a role of the processor of the
complex incoming pattern with its subsequent transfer to the neocortex as a set of
“classificatory units® [10,11]. A role of temporal storage of information was assigned
to a field CA3, which due to an extensive system of recurrent collaterals is a natural
autoassociator. We suggest that due to presented ability of autoassociator to perform
factorization, this field can carry out a function of decomposition of complex
information into elementary factors.

Complex pattern could be decomposed in hippocampus into factors, which are
later replayed to the neocortex in the form of coherent ensembles of neurons (Marr’s
classificatory units). The idea of “processing-consolidation” procedure in
hippocampo-neocortical system proposed by Buzsaki [3,4] is incorporated in our
model. At a stage of "learning” a complex pattern of partially processed polysensory
information from neocortex modulated by theta rhythm reaches CA3, where
interbound coherent ensembles (attractors) are formed. These attractors correspond to
factors that encode complex pattern. At a stage of “recording” during sleep high-
frequency activity in CA3 is triggered that excites those groups of target neurons in
the neocortex that have strong connections with the ensembles-factors in CA3. Due to
LTP-modification of synaptic connections between and within classificatory units in
neocortex both prestored factors are enhanced and new ones are formed.
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Conclusion

The proposed idea of factorization in autoassociator was partially tested. Recurrent
neural network proved to be capable of extracting factors from the complex patterns
structure learned using Hebbian rule. Our investigation has not yet covered the
internal structure of attraction basins, number of spurious attractors and so on. This
will be the aim of future research. Factorization plausibility turned out to be dependent
on the absolute complexity of the patterns. It hints the idea to extend the network

parameters to the real onedN é105,p=0.04, P{J; #0t=0. )02nd use more

biologically plausible neural dynamics to estimate such critical macroparameters that
could be compared with their analogues in a behavioral experiment. Functional idea of
factorization was shown to be applicable to neurophysiological memory models and
could be further used as basis for theoretical study of memory related problems.
Extensively studied spatial navigation could be an excellent test range for this idea.
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