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Abstract. Most Support Vector (SV) methods proposed in the recent
literature can be viewed in a uni�ed framework with great exibility
in terms of the choice of the basis functions. We show that all these
problems can be solved within a unique approach if we are equipped
with a robust method for �nding a sparse solution of a linear system.
Moreover, for such a purpose, we propose an iterative algorithm that can
be simply implemented. This allows us to generalize the classical SV
method to a generic choice of the basis functions.

1. Introduction

In many engineering problems, one is interested in �nding a solution of a linear
system of equations:

Au = b (1)

where A is a ` � M real matrix, u an M -dimensional vector and b an `-
dimensional vector. We consider here the case in which one is not simply
interested in obtaining an accurate solution, but in obtaining a solution which
is both accurate and sparse, i.e. an accurate solution such that a large part
of its components are null. Three settings of the problem may be of interest:
1) look for the most accurate solution such that the number of its nonzero
components is smaller than a �xed value:

S1 :

8<
:

min
u

E(u)

N (u) � d1

; (2)

where E(u) is a measure of the accuracy of u as solution of the linear system
and N (u) is the number of nonzero components of u; 2) look for the sparsest
point in a given surrounding of the solutions:

S2 :

8<
:

min
u

N (u)

E(u) � E

; (3)
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3) minimize the following quantity:

S3 : min
u

E(u) + "N (u) ; (4)

where " is a positive constant which controls the trading of sparsity and ac-
curacy. Moreover, the following constraint should be imposed in all the three
settings to avoid an unstable solution:

jujj � Cj ; j 2 f1; : : : ;Mg; (5)

where Cj are constants (usually set to the same value C).
Brute force solutions of these problems would be time-consuming. We re-

view, with some re�nements, the SV method which allows one to obtain a
robust solution in a reasonable time.

2. An approach for a positive semide�nite ma-

trix

This type of approach was introduced for particular applicative scenarios in
[7, 9, 1, 2] with the name of SV method or Basis Pursuit De-Noising. The
matrix of the linear system is assumed to be a square positive semide�nite
matrix. (We will see in the following how to utilize this method when this
assumption is not valid). In this approach, the idea is to solve problems S1,
S2 and S3 by utilizing the following approximations of E(u) and N (u):

E(u) ' E1(u)
4
=

1

2
uTAu� bTu ; (6)

N (u) ' N1(u)
4
= kukL1

=
X
j2B

jujj; (7)

where uj is the jth component of u and B
4
= f1; : : : ;Mg. If some indices

are removed from B, then the corresponding components of u are included in
the obtained solution. Approximation (6) is motivated by the fact that, for
a positive de�nite A, E1(u) is a quadratic function of u which assumes its
minimum at the true solution of the linear system. Approximation (7) comes
from the fact thatN1(u) is one of the best convex approximation ofN (u). This
assures that the considered optimization problem has a unique solution. Some
non-convex approximation of N (u) were proposed (see [2]) but the resulting
optimization problem presents many local minima. Perhaps, one could try to
use the solution of the convex approximation as starting point for the non-
convex problem. The main drawback of the SV approach is that it requires the
solution of a nonlinear optimization problem. Many methods exist for solving
it but they are generally di�cult to implement and have consistent memory
requirements (apart from the memory required to store A and b).

We propose here a simple learning algorithm for solving the resulting opti-
mization problem which is very simple to implement and does not require any
additional storage.
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2.1. A simple method for the sparse and robust solution

of linear system

In this section we consider the problem to be solved for the setting S3; similar
algorithms can be derived in the setting S1 and S2. We have to solve the
problem S3 (4) with the approximations (6) and (7) subject to the constraint
(5). We propose the application of a coordinate-descent method for its solu-
tion. We consider an index j 2 f1; : : : ;Mg and minimize with reference to the
variable uj , maintaining �xed all the other variables; we simply need to apply
the following updating rule [5]:

uj = min

2
4Cj ��

�
jdj � f̂j j � "

�
;

���jdj � f̂j j � "

���
Ajj

3
5 sign(dj � f̂j): (8)

where f̂j
4
=

MX
i=1;i6=j

Aijui, Aij is the generic element of A and �(�) is the

classic step function, i.e. it is equal to zero if � � 0 and it is equal to one if
� > 0. Our simple approach consists in starting from a point which satis�es
the bound (5) and in cycling on all the variables until the variations in the
components of u become negligible for an entire cycle or for some cycles. If the
value of j does not belong to B and we do not want to limit its value with the

constraint (5), then the up-dating rule (8) reduces to uj =
dj � f̂j

Ajj

.

The main advantage of the proposed method lies in the simplicity of its
implementation, that allows us to utilize it also for very large M . Another
advantage lies in the fact that its complexity mainly depends on the number of
the variables such that 0 < jujj < C at the optimum solution; therefore, it is
better suited for sparse problems and for the case of small value of C (strong
regularization). Some practical tricks, useful for reducing execution time, have
been described in [5].

3. SV methods for a general matrix

In the case in which the matrix A is not square or not positive semide�nite,
one can consider the following linear problem

(AT
A)u = A

T
b : (9)

A sparse and accurate solution of (9) can be obtained with the method consid-
ered in the Section 2 since the matrixATA is square and positive semide�nite.

3.1. A particular case

Let us consider the case in which M > ` and the matrix A can be written as

A = [A1;A2]; (10)
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where A1 is a ` � ` symmetric positive semide�nite matrix. Let us write the
vector u as [uT1 ;u

T
2 ]

T , where u1 is an `-dimensional vector. The SV approach
suggests [8, 7] �nding u1 by passing to the previous case with the square positive
semide�nite matrix equal to A1 and by adding to the problem the following
additional constraint:

AT
2 u1 = 0 : (11)

The advantage consists in solving an ` dimensional problem rather than an M

dimensional one. However, we pay this reduction with the additional constraint
(11). Moreover, it is not always easy to complete the solution determining the
vector u2. We remark that this approach is not general since it can be applied
only if the matrix A can be written in the form (10); moreover, it is not
equivalent to (9).

4. Generalized Support Vector Machine

Let us consider the classical problem of regression estimation: we are given `

noisy examples f(x1; y1); : : : ; (x`; y`)g obtained froma unknown target function
f (x) and a class of functions

f̂ (x) = u1�1(x) + u2�2(x) + : : :+ uM�M(x) = �
T (x)u (12)

where u
4
= [u1; : : : ; uM ]T and �(x)

4
= [�1(x); : : : ; �M(x)] is a vector of

known functions; M can be also chosen dependent on `.
Both the theory of regularization and the Statistical Learning Theory [9,

6, 3] suggests �nding an approximation of the target function by solving the
following linear system:

�
GTG+ �R

�
u = GTy (13)

where y
4
= [y1; : : : ; y`], G

4
= [�(x1); : : : ;�(x`)]T . The matrix R is a regular-

izing matrix weighted by a small value of � and it depends on the knowledge
available a priori; when no a priori knowledge is available, a typical choice is
R = I.

By applying to the linear system (13) the methods described in Sections 2
and 3 for deriving a sparse solution, we obtain an original improvement on the
existing techniques for regression estimation; we call this approach \General-
ized SVM". The reason for which one is interested in sparsity lies in the reduced
computational complexity for evaluating f̂ , in the greater accuracy obtainable
and in the possibility to give a physical meaning to the obtained model, i.e.
in trying an explanation of the given data in the shortest and most accurate
form.

The parameters � and C, as well as the parameters eventually introduced
in the de�nition of the function �(�), need to be chosen by utilizing some cross-
validation technique or the bounds provided by the VC-theory [9].
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We show now that other already proposed methods for regression estima-
tion, developed in the context of SV Machine (SVM), can be seen as particular
cases of our method. Let us �rst consider the case in which M = ` and
�i(x) = K(x;xi) where K(�; �) is a symmetric positive de�nite kernel. In this
case, choosing R = G, we obtain that the solution u should satisfy the follow-
ing linear system:

(G+ �I)u = y : (14)

This equation is well-known as strict interpolation condition [3]. If we apply the
method described in Section 2 to make sparse the solution of (14), we obtain
the classical method of SVM when the threshold is �xed to zero. Actually, in
the classical SVM � is set to zero; it becomes di�erent from zero if a quadratic-
linear "-insensitive loss function, rather than simply a linear "-insensitive one,
is chosen. Moreover, for a symmetric positive semide�nite kernel K(�; �), robust
solutions of (14) and (13) are very similar in practice; SVM still refers to (14).

The classical SVM machine is obtained for M = ` + 1, �i(x) = K(x;xi)
(i = 1; : : : ; ` ) as before and �`+1(x) � 1. This choice was introduced in [9]
since it does not modify the VC-dimension of the considered class of func-
tions. In such a case, since the matrix G satis�es (10), one has to solve the
`-dimensional optimization problem (for the case without threshold) over the
�rst ` components u1 of u under the constraint

1
Tu1 = 0: (15)

In general, one can consider M > l and de�ne �i as before for i 2 f1; : : : ; `g
and other generic functions �i for i 2 f`+ 1;Mg. Then, one can get the �rst `
components of the solution u by replacing the constraint (15) with (11) where
A2 = [�`+1 : : :�M ] with �i = [�i(x1) : : : �i(x`)]

T (i 2 f` + 1; : : : ;Mg). This
choice implies that we are not interested in rendering null the last M � ` com-
ponents of u. This may come from a strong a priori knowledge about the
opportunity of including the functions �i (i = ` + 1; : : : ; d) in the estimated
function. A simple choice would be that of including the linear term in last
M � ` components of the expansion. This is very useful in some engineering
problems where the nonlinear target function is known to be slightly nonlin-
ear. The general SVM method with the constraint (11) has been independently
discovered in [8]; a similar approach for classi�cation problems has been intro-
duced in [4].

5. Conclusions

We stated the general problem of �nding a sparse solution of a linear system
and reviewed the SV approach for solving it. Then, we note that the problem
of learning from examples a function in the form (12) requires the solution of
a linear system. By applying the SV approach for solving it sparsely, we have
obtained as particular cases many variations of the SVM. We conclude with a
simple example in which SVM cannot work well while Generalized SVM can.
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Let us assume that the number of examples is ` = 50; 000; let us suppose we
do not want to utilize more than M = 3000 Radial Basis Functions (RBF)
in the expansion to be made sparse, because we cannot deal with a numerical
problem with more than 3000 variables. With the classical SVM, we are forced
to consider a class of function with RBF centered on 3; 000 out of the 50; 000
examples. Then, SVM utilizes only the chosen 3; 000 examples to get a good
approximation inside the considered class of functions. With the Generalized
SVM one considers the M�M matrixA = GTG+�I and, therefore, utilize all
the 50; 000 to �nd a good approximation inside the same class of functions. This
is, however, only an example in which one can utilize the freedom of choosing
the vector �(x) and its dimensionM to improve on the existing techniques. A
good choice of the vector �(x) is an important issue for obtaining a good and
sparse approximation in a speci�c problem. In our general approach this choice
constitutes the counterpart of the kernel choice in the classical SVM approach.
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