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Abstract. The solution of binary classi�cation problems using sup-
port vector machines (SVMs) is well developed, but multi-class problems
with more than two classes have typically been solved by combining inde-
pendently produced binary classi�ers. We propose a formulation of the
SVM that enables a multi-class pattern recognition problem to be solved
in a single optimisation. We also propose a similar generalization of lin-
ear programming machines. We report experiments using bench-mark
datasets in which these two methods achieve a reduction in the number
of support vectors and kernel calculations needed.

1. k-Class Pattern Recognition

The k-class pattern recognition problem is to construct a decision function
given ` iid (independent and identically distributed) samples (points) of an
unknown function, typically with noise:

(x1; y1); : : : ; (x`; y`) (1)

where xi; i = 1; : : : ; ` is a vector of length d and yi 2 f1; : : : ; kg represents the
class of the sample. A natural loss function is the number of mistakes made.

2. Solving k-Class Problems with Binary SVMs

For the binary pattern recognition problem (case k = 2), the support vector
approach has been well developed [3, 5].

The classical approach to solving k-class pattern recognition problems is to
consider the problem as a collection of binary classi�cation problems. In the
one-versus-rest method one constructs k classi�ers, one for each class. The nth

classi�er constructs a hyperplane between class n and the k � 1 other classes.
A particular point is assigned to the class for which the distance from the
margin, in the positive direction (i.e. in the direction in which class \one" lies
rather than class \rest"), is maximal. This method has been used widely in
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the support vector literature to solve multi-class pattern recognition problems,
see for example [4] or [2].

Alternatively, (k(k�1)
2 ) hyperplanes can be constructed (the one-versus-one

method), separating each class from each other class and a decision function
constructed using some ad-hoc voting system.

3. k-Class Support Vector Machines

A more natural way to solve k-class problems is to construct a piecewise linear
separation of the k classes in a single optimisation.

The binary SVM optimisation problem [5] is generalised to the following:
minimise

�(w; �) =
1

2

kX
m=1

(wm �wm) +C
X̀
i=1

X
m6=yi

�mi (2)

subject to

(wyi � xi) + byi � (wm � xi) + bm + 2� �mi ; (3)

�mi � 0; i = 1; : : : ; ` m 2 f1; : : : ; kg n yi:

This gives the decision function:

f(x) = argmax
n

�
(wn � x) + bn

�
; n = 1; : : : ; k: (4)

Note �rst that for k = 2, this formulation of the optimisation problem
reduces exactly to the binary SVM solution [5] if we take w1 = �w2, b1 = �b2,
and �i = (1=2)�1i for pattern i in class 1 and �i = (1=2)�2i for pattern i in class
2.

Second, a decision function of the form (4) can be more powerful than a set
of one-versus-rest binary classi�ers, in the sense that it is possible to construct
multi-class datasets that can be separated perfectly by a decision rule of type
(4), but in which the training data cannot be classi�ed without error by one-
versus-rest. For example, consider classes which lie inside segments of a d
dimensional sphere (see [1] for details).

We can �nd the solution to this optimisation problem in dual variables by
�nding the saddle point of the Lagrangian:

L(w; b; �; �; �) =
1

2

kX
m=1

(wm � wm) + C

lX
i=1

kX
m=1

�mi

�

lX
i=1

kX
m=1

�m
i

�
((wyi � wm) � xi) + byi � bm � 2 + �mi

�
�

lX
i=1

kX
m=1

�mi �mi
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with the dummy variables

�yi
i = 0; �yii = 2; �yii = 0; i = 1; : : : ; `

and constraints

�m
i � 0; �mi � 0; �mi � 0; i = 1; : : : ; ` m 2 f1; : : : ; kg n yi

which has to be maximised with respect to � and � and minimised with respect
to w and �. Introducing the notation

Ai =
kX

m=1

�m
i and cni =

(
1 if yi = n
0 if yi 6= n

and through various manipulations (omitted due to lack of space) we arrive at:
maximise

W �(�) = 2
X
i;m

�m
i +

X
i;j;m

�
�
1

2
cyij AiAj + �m

i �
yi
j �

1

2
�m
i �

m
j

�
(xi � xj) (5)

which is a quadratic function in terms of alpha with linear constraints

X̀
i=1

�n
i =

X̀
i=1

cni Ai; n = 1; : : : ; k

and

0 � �m
i � C; �yi

i = 0; i = 1; : : : ; ` m 2 f1; : : : ; kg n yi: (6)

One can �nd the values bn; n = 1; : : : ; k by solving a set of simultaneous
equations from the Kuhn-Tucker optimality conditions or by obtaining them
as the values of the dual variables when using an interior point optimizer (as
noted by A. Smola and B. Sch�olkopf). One then obtains the decision function:

f(x) = argmax
n

� X̀
i=1

(cni Ai � �n
i )(xi � x) + bn

�
: (7)

As usual the inner products (xi � xj) in (5) and (7) can be replaced with a
generalised inner product K(xi; xj) (see [5]).

4. k-Class Linear Programming Machines

One can also consider the generalisation of the linear programming machine
method [6]. One can minimise the following linear program:

X̀
i=1

�i +C
X̀
i=1

X
j 6=yi

�ji
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subject toX
m:ym=yi

�mK(xi; xm) + byi �
X

n:yn=yj

�nK(xi; xn) + byj + 2� �ji

�i � 0; �ji � 0; i = 1; : : : ; `; j 2 f1; : : : ; kg n yi

and use the decision rule

f(x) = argmax
n

(
X

i:yi=n

�iK(x; xi) + bn):

In this formulation there are only ` coe�cients, independent of the number
of classes, k, whereas in the other methods there are `k coe�cients. Further-
more, the regularization directly attempts to reduce the number of non-zero
coe�cients.

5. Further analysis

For binary SVMs the expectation of the probability of commiting an error on
a test example is bounded by the ratio of of the expectation of the number
of training points that are support vectors to the number of examples in the
training set [5]:

E[P (error)] =
E[number of training points that are support vectors]

(number of training vectors) � 1
(8)

This bound also holds in the multi-class case for the voting scheme methods
(one-against-rest and one-against-one) and for our multi-class support vector
method. This can be seen by noting that any training point that is not a
support vector is still classi�ed correctly when it is left out of the training set.
Note that this means we are interested in the size of the union of the set of all
support vectors that de�ne each hyperplane in the classi�er, which is equivalent
to the number of kernel calculations required, rather than the sum of the sizes
of the sets.

Secondly, it is worth noting that the solution of the one-against-rest method
is a feasible solution of our multi-class method, but not necessarily the optimal
one. This can be seen by considering the one-against-rest method as one formal
step. In the hard margin case (C =1) one is required to minimize

Pk

m=1(wm �
wm) with constraints wyi � xi + byi � 1 and wj � xi + bj � �1 for i = 1; : : : ; `
and j 2 f1; : : : ; kgn yi. One can see that if these constraints are satis�ed so are
constraints (3). This means that our multi-class method will have the same or

lower value of
Pk

m=1(wm � wm), where a small value of (w � w) in the binary
case corresponds to low VC dimension and large margin (which mean good
generalization).
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Table 1: Comparison of Error Rates

name #pts #atts #class 1-v-r 1-v-1 mc-sv mc-lp

iris 150 3 4 1.33 1.33 1.33 2.0
wine 178 13 4 5.6 3.6 3.6 10.8
glass 214 9 7 35.2 36.4 35.6 37.2
soy 289 208 17 2.43 2.43 2.43 5.41
vowel 528 10 11 39.8 38.7 34.8 39.6
postal 500 256 10 9.36 8.37 9.67 13.9

Table 2: Comparison of the Number of Support Vectors

1-v-r 1-v-1 mc-sv mc-lp

name svs k-calcs svs k-calcs svs k-calcs svs k-calcs

iris 75 40 54 40 46 31 13 13
wine 398 136 268 135 135 110 110 110
glass 308 131 368 127 203 113 72 72
soy 406 197 1669 229 316 160 102 102
vowel 2170 439 3069 774 1249 348 238 238
postal 651 294 1226 285 499 249 114 114

6. Simulations

We tested our method on a collection of �ve benchmark problems from the
UCI machine learning repository1. Where no test set was provided the data
were each split randomly ten times with a tenth of the data being used as a
test set. The performance of the multi-class support vector method (mc-sv)
and multi-class linear programming method (mc-lp) were compared with one-
versus-rest (1-v-r) and one-versus-one (1-v-1) binary classi�cation SV meth-
ods. To enable comparison decision functions were constructed with a hard
margin (parameter C =1) and the same radial basis function kernel for each
algorithm. The results are summarised in Tables 1 and 2.

mc-sv performed comparably with the voting scheme methods, but had
a smaller number of non-zero coe�cients (svs) and kernel calculations (k-
calcs)2. Note this means lower values of the upper bound on generalization
error (8). mc-lp had a signi�cantly reduced number of svs and k-calcs (they
are equivalent because each inner product has only one associated multiplier)

1URL:http://www.ics.uci.edu/mlearn/MLRepository.html. The training set \postal" is
the �rst 500 examples of the U.S Postal service database (LeCun et al., 1989), using the
whole testing set.

2The number of kernel calculationswill usually be less than the number of support vectors
in all the algorithms as they can be cached if two support vectors use the same kernel
calculation.
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but did not achieve good generalization ability. We have since realized this
could be due to the di�erence in the decision rules between the methods: mc-

lp has a di�erent number of basis functions in its decision rule (` instead of `k)
and may perform well with very di�erent choices of kernel to the other three
methods, but we kept the choice �xed.

7. Conclusions

In conclusion, we have described two new methods of solving multi-class pat-
tern recognition problems with support vector machines. Results obtained on
the benchmark datasets suggest that the new methods can reduce the num-
ber of support vectors and kernel computations. One can construct examples
where the new methods will separate data but voting scheme methods cannot.
However, this has not been reected in error rates on the datasets used.
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