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Abstract. We study the relation between support vector machines
(SVMs) for regression (SVMR) and SVM for classification (SVMC). We
show that for a given SVMC solution there exists a SVMR solution which
is equivalent for a certain choice of the parameters. In particular our
result is that for ε sufficiently close to one, the optimal hyperplane and
threshold for the SVMC problem with regularization parameter Cc are
equal to 1

1−ε times the optimal hyperplane and threshold for SVMR with
regularization parameter Cr = (1 − ε)Cc. A direct consequence of this
result is that SVMC can be seen as a special case of SVMR.

1. Introduction

We assume that the reader has some familiarity with Support Vector Machines.
In this section, we provide a brief review, aimed specifically at introducing the
formulations and notations we will use throughout this paper. For a good
introduction to SVMs, see [1] or [3].
In the support vector machine classification problem, we are given l examples
(x1, y1), . . . , (xl, yl), with xi ∈ IRn and yi ∈ {−1, 1} for all i. The goal is to find
a hyperplane and threshold (w, b) that separates the positive and negative ex-
amples with maximum margin, penalizing points inside the margin linearly in
a user-selected regularization parameter C > 0. The SVM classification prob-
lem can be restated as finding an optimal solution to the following quadratic
programming problem:

(C) min 1
2‖w‖2 + C

∑`
i=1 ξi

w, b, ξ
yi(w · xi + b) ≥ 1− ξi i = 1, . . . , l

ξ ≥ 0

This formulation is motivated by the fact that minimizing the norm of w is
equivalent to maximizing the margin; the goal of maximizing the margin is in
turn motivated by attempts to bound the generalization error via structural
risk minimization. This theme is developed in [3].
In the support vector machine regression problem, the goal is to construct a
hyperplane that lies “close” to as many of the data points as possible. We
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are given l examples (x1, y1), . . . , (xl, yl), with xi ∈ IRn and yi ∈ IR for all i.
Again, we must select a hyperplane and threshold (w, b)1. Our objective is
to choose a hyperplane w with small norm, while simultaneously minimizing
the sum of the distances from our points to the hyperplane, measured using
Vapnik’s ε-insensitive loss function:

|yi − (w · xi + b)|ε =
{

0 if |yi − (w · xi + b)| ≤ ε
|yi − (w · xi + b)| − ε otherwise (1)

The parameter ε is preselected by the user. As in the classification case, the
tradeoff between finding a hyperplane with small norm and finding a hyperplane
that performs regression well is controlled via a user selected regularization
parameter C. The quadratic programming problem associated with SVMR is:

(R) min 1
2‖w‖2 + C

∑`
i=1(ξi + ξ∗i )

w, b, ξ, ξ∗

yi − (w · xi + b) ≤ ε+ ξi i = 1, . . . , l
−yi + (w · xi + b) ≤ ε+ ξ∗i i = 1, . . . , l

ξ, ξ∗ ≥ 0
The main aim of this paper is to demonstrate a connection between support

vector machine classification and regression.
In general, SVM classification and regression are performed using a nonlinear
kernel K(xi,xj). For simplicity of notation, we chose to present our formula-
tions in terms of a linear separating hyperplane w. All our results apply to the
nonlinear case; the reader may assume that we are trying to construct a linear
separating hyperplane in a high-dimensional feature space.

2. From Regression to Classification

In the support vector machine regression problem, the yi are real-valued rather
than binary-valued. However, there is no prohibition against the yi being
binary-valued. In particular, if yi ∈ {−1, 1} for all i, then we may perform
support vector machine classification or regression on the same data set.
Note that when performing support vector machine regression on {−1, 1}-
valued data, if ε ≥ 1, w = 0, ξ = 0, ξ∗ = 0 is an optimal solution to R.
Therefore, we restrict our attention to cases were ε < 1. Loosely stated, our
main result is that for ε sufficiently close to one, the optimal hyperplane and
threshold for the support vector machine classification problem with regulariza-
tion parameter Cc are equal to 1

1−ε times the optimal hyperplane and threshold
for the support vector machine regression problem with regularization param-
eter Cr = (1− ε)Cc. We now proceed to formally derive this result.
We make the following variable substitution:

ηi =
{
ξi if yi = 1
ξ∗i if yi = −1. , η∗i =

{
ξ∗i if yi = 1
ξi if yi = −1. (2)

1Observe that now the hyperplane will reside in n+ 1 dimensions.
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Combining this substitution with our knowledge that yi ∈ {−1, 1} yields the
following modification of R:

(R′) min 1
2‖w‖2 + C

∑`
i=1(ηi + η∗i )

w, b, η, η∗

yi(w · xi + b) ≥ 1− ε− ηi i = 1, . . . , l
yi(w · xi + b) ≤ 1 + ε+ η∗i i = 1, . . . , l

η, η∗ ≥ 0
Continuing, we divide both sides of each constraint by 1−ε, and make the vari-
able substitutions w′ = w

1−ε , b
′ = b

1−ε , η
′ = η

1−ε , η
∗′ = η∗

1−ε :

(R′′) min 1
2‖w′‖2 + C

1−ε (
∑`
i=1(η′i + η∗

′

i ))
w′, b′, η′, η∗

′

yi(w′ · xi + b′) ≥ 1− η′i i = 1, . . . , l
yi(w′ · xi + b′) ≤ 1+ε

1−ε + η∗
′

i i = 1, . . . , l
η′, η∗

′ ≥ 0
Looking at formulation R′′, one suspects that as ε grows close to 1, the second
set of constraints will be “automatically” satisfied with η∗ = 0. We confirm
this suspicion by forming the Lagrangian dual:

(RD′′) min 1
2

∑l
i,j=1(βi − β∗i )Dij(βi − β∗i )−

∑
i βi + 1+ε

1−ε
∑
i β
∗
i

β ∑
i yiβi =

∑
i yiβ

∗
i

βi, β
∗
i ≥ 0

βi, β
∗
i ≤ C

1−ε
where D is the symmetric positive semidefinite matrix defined by the equation
Dij ≡ yiyjxixj . For all ε sufficiently close to one, the η∗i will all be zero: to see
this, note that η = 0, η∗ = 0 is a feasible solution to RD′′ with cost zero, and
if any η∗i is positive, for ε sufficiently close to one, the value of the solution will
be positive. Therefore, assuming that ε is sufficiently large, we may eliminate
the η∗ terms from R′′ and and the β∗ terms from D′′. But removing these
terms from R′′ leaves us with a quadratic program essentially identical to the
dual of formulation C:
(CD′′) min 1

2

∑l
i,j=1 βiDijβj −

∑
i βi

β ∑
i yiβi = 0

βi ≥ 0
βi ≤ C

1−ε
Going back through the dual, we recover a slightly modified version of C:
(C′) min 1

2‖w‖2 + C
1−ε

∑`
i=1 ξi

w, b, ξ
yi(w · xi + b) ≥ 1− ξi i = 1, . . . , l

ξ ≥ 0
Starting from the classification problem instead of the regression problem, we
have proved the following theorem:
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Theorem 2..1 Suppose the classification problem C is solved with regulariza-
tion parameter C, and the optimal solution is found to be (w, b). Then, there
exists a value a ∈ (0, 1) such that ∀ε ∈ [a, 1), if problem R is solved with
regularization parameter (1− ε)C, the optimal solution will be (1− ε)(w, b).

Several points regarding this theorem are in order:
The η substitution. This substitution has an intuitive interpretation. In
formulation R, a variable ξi is non-zero if and only if yi lies above the ε-tube,
and the corresponding ξ∗i is non-zero if and only if yi lies below the ε-tube. This
is independent of whether yi is 1 or −1. After the η substitution, ηi is non-zero
if yi = 1 and yi lives above the ε-tube, or if yi = −1 and yi lives below the
ε-tube. A similar interpretation holds for the η∗i . Intuitively, the ηi correspond
to error points which lie on the same side of the tube as their sign, and the
η∗i correspond to error points which lie on the opposite side. We might guess
that as ε goes to one, only the former type of error will remain: the theorem
provides a constructive proof of this conjecture.
Support Vectors. Examination of the formulations, and their KKT condi-
tions, shows that there is a one-to-one correspondence between support vectors
of C and support vectors of R under the conditions of correspondence. Points
which are not support vectors in C and therefore lie outside the margin and are
correctly classified will lie strictly inside the ε-tube in R. Points which lie on
the margin in C will lie on the boundaries of the ε-tube in R, and are support
vectors for both problems. Finally, points which lie inside the margin or are
incorrectly classified in C will lie strictly outside the ε-tube, above the tube for
points with y = 1, below the tube for points with y = −1, and are support
vectors for both problems.
Computation of a. Using the KKT conditions associated with problem (R′′),
we can determine the value of a which satisfies the theorem. To do so, simply
solve problem C′, and choose a to be the smallest value of ε such that when the
constraints (w′ · xi + b′) ≤ 1+ε

1−ε + η∗
′

i , i = 1, . . . , l are added, they are satisfied
by the optimal solution (w, b) of problem C′. In particular, if we define m to
be the maximal value of yi(w · xi + b), then a = m−1

m+1 will satisfy the theorem.
Observe that as w := ‖w‖ gets larger (i.e., the separating hyperplane gets
steeper), or as the correctly classified xi get relatively (in units of the margin
w−1) farther away from the hyperplane we expect a to increase. More precisely
it is easy to see that m ≤ wD, with D the diameter of the smallest hypersphere
containing all the points. Then a ≤ wD−1

wD+1 , which is an increasing function of
w. Finally observe that incorrectly classified points will have yi(w ·xi+ b) < 0,
and therefore they cannot affect m or a.
The ξ2 case. We may perform a similar analysis when the slack variables
are penalized quadratically rather than linearly. The analysis proceeds nearly
identically. In the transition from formulation R′ to R′′, an extra factor of (1−
ε) falls out, so the objective function in R′′ is simply 1

2‖w′‖2 +C(
∑`
i=1((η′i)

2 +
(η∗
′

i )2)). The theorem then states that for sufficiently large ε, if (w, b) solves C
with regularization parameter C, (1−ε)(w, b) solvesR, also with regularization
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parameter C.
Variations of the SVM algorithm. Recently a modification of the SVM
algorithm for both classification and regression has been proposed [2]. The
main idea is to introduce a new parameter with the purpose of controlling the
number of support vectors a priori (before training). It might be interesting to
check if our analysis applies to the modified algorithms too.

3. Examples

In this section, we present two simple one-dimensional examples that help to
illustrate the theorem. These examples were both performed penalizing the ξi
linearly.
In the first example, the data are linearly separable. Figure 1a shows the data
points, and Figure 1b shows the separating hyperplane found by performing
support vector classification with C = 5 on this data set. Note that in the
classification problem, the data lie in one dimension, with the y-values being
“labels”. The hyperplane drawn shows the value of w · x + b as a function
of x. The computed value of a is approximately .63. Figure 1c shows the ε-
tube computed for the regression problem with ε = .65, and Figure 1d shows
the same for ε = .9. Note that every data point is correctly classified in the
classification problem, and that every data point lies inside the ε-tube in the
regression problems, for the values of ε chosen.
In the second example, the data are not linearly separable. Figure 2a shows the
data points. Figure 2b shows the separating hyperplane found by performing
classification with C = 5. The computed value of a is approximately .08.
Figures 2c and d show the regression tubes for ε = .1 and ε = .5, respectively.
Note that the points that lie at the edge of the margin for classification, x = −5
and x = 6 lie on the edge of the ε-tube in the regression problems, and that
points that lie inside the margin, or are misclassified, lie outside the ε-tube.
The point x = −6, which is the only point that is strictly outside the margin in
the classification problem, lies inside the ε-tubes. The image provides insight
as to why a is much smaller in this problem than in the linearly separable
example: in the linearly separable case, any ε-tube must be shallow and wide
enough to contain all the points.

4. Conclusions and Future Work

In this note we have shown how SVMR can be related to SVMC. Our main
result can be summarized as follows: if ε is sufficiently close to one, the optimal
hyperplane and threshold for the SVMC problem with regularization parameter
Cc are equal to 1

1−ε times the optimal hyperplane and threshold for SVMR with
regularization parameter Cr = (1− ε)Cc. A direct consequence of this result is
that SVMC can be regarded as a special case of SVMR. An important problem
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(a) Data (b) Classification
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(c) Regression, ε = .65 (d) Regression, ε = .9

Figure 1: Separable data.
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(c) Regression, ε = .1 (d) Regression, ε = .5

Figure 2: Non-separable data.

which will be study of future work is whether this result can help place SVMC
and SVMR in the same common framework of structural risk minimization.
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