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Abstract

This paper considers artificial neural network modelling from a statis-
tical point of view. Specification, estimation and evaluation are carried
out using Lagrange multiplier testing. Simulations in samples of moderate
size demonstrate the performances of the overall procedure.
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1. Specification and estimation

The capability of single hidden-layer feedforward neural networks (hereafter NN)
of approximating any Borel-measurable function to any degree of accuracy has
been pointed out in Hornik, Stinchcombe, and White (1989). Nonlinear features
in time series can then be successfully modelled applying statistical tools to the
data of interest, since the connection between NN and statistics is generally well
accepted. I call the following model an autoregressive NN model of order k with
q hidden units and a linear component:
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Here, I assume for simplicity that all lags from 1 to k enter model (1.1).

In time series applications, the first issue is the choice of lags to be included
in the model. I do this using a semiparametric method as in Rech, Terisvirta,
and Tschernig (1999); hereafter RTT. The authors utilize an h-th order Taylor
expansion of the process. Such expansion contains all possible combinations of
lags from 1 to k, the maximum lag encompassed, the idea being that the terms
involving redundant lags have zero coeflicients. This fact is used to omit the
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redundant variables from the model. The variable selection procedure works
as follows. First, regress y; on all variables (products of lags from 1 to k)
in the Taylor expansion and compute the value of the SBIC criterion (Rissanen
(1978), Schwarz (1978)). Next, leave one lag out from the original model, regress
y; on all products of remaining lags in the Taylor expansion and compute the
value of the criterion. Repeat this by omitting each lag in turn. Continue by
simultaneously omitting two lags from the original model. Proceed until y; is
just white noise. This amounts to estimating Zle (]:) + 1 = 2* linear models
by ordinary least squares. The combination of lags that yields the lowest value
of the model selection criterion is selected. SBIC is consistent in the sense that
if there is a finite set of correct lags and if the true model is exactly a h-th
order Taylor expansion, the correct lags will asymptotically be selected with
probability one. Although the number of regressors grows exponentially with &
and h, RTT show that the procedure works well already in small samples and
can be applied even in large samples where the nonparametric model selection
techniques become computationally infeasible.

The second step is linearity testing. I follow Terdsvirta, Lin, and Granger
(1993), where the authors utilize a third-order Taylor expansion to approximate
the nonlinear hidden units. This is equivalent to testing for 0 hidden units
against 1. Once linearity is rejected, the choice of the number of hidden units
determines the goodness of the approximation to the true data generating process
(hereafter DGP). It is therefore important to utilize an appropriate method for
this choice. I test a NN model with g hidden units against a model with g+1 ones,
g =0,1,2,...., carrying out a sequence of Lagrange Multiplyer (hereafter LM)
tests from specific to general until the first acceptance of the null hypothesis of
q hidden units. LM testing is based on the likelihood function restricted under
Hp. An extensive description of LM testing can be found in Godfrey (1988).
The (g + 1)-th hidden unit is approximated by a Taylor series to the third order
around the point 7y, ;=0 as in Terdsvirta, Lin, and Granger (1993). We call
the first, second and third order coefficients A;, Ai;, Aiji, respectively. This is
done to avoid identification problems since if (3, ; equals zero, model (1.1) is
not identified:
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where a* = a + A*, )\j = 5q+1)\i7 /\Z = ﬁq+1/\ij: )‘;th = ﬁq+1/\ijl: uf =
ﬂq+1F3("Yq+1,Wt;0) + uz, where F3(7q+1,wt;0) is the rest of the third-order
Taylor expansion of the (¢ + 1)-th hidden unit. The null hypotesis corresponds
to A; = 0,0 = 1,..,k;j =i,k Njyp = 0,0 = 1,0,k =4, k0 = 4,0k
in (1.2). I define the estimated residuals under the null hypothesis, v; = y; —
~ %/

& wy — Z?Zl ﬁjd)(ﬁlj, w;), where "7 denotes a consistent estimator. The test
can be performed in three stages:



ESANN'2000 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2000, D-Facto public., ISBN 2-930307-00-5, pp. 117-122

(i) compute the estimated residuals ¥; and the corresponding sum of the
squared residuals SSRy = Y 0%;

(ii) regress vy on wy, Y(¥;, Wt), (8@/)('yj,wt)/8’yj)%::y\/, j=1,..,q, and all
the terms at the second and third power, whose numbjer IJ call m and compute
the residuals U] and their sum SSR = 5 0/?;

(iii) compute
~ (SSRo — SSR) /m
~ SSR/(T —k—1—m)

Under the null, F' is approximately distributed as an Fy, 7—x—1—m-

The estimation procedure for model (1.1) resembles the 2-steps algorithm
in White (1989). In order to improve its accuracy, a set of starting values is
chosen, linearizing the model and using ordinary least squares. The nonlinear
least squares procedure is subsequently carried out by the Broyden-Fletcher-
Goldfarb-Shanno algorithm.

Summing up, the overall device works as follows. The set of variables to
be included in the model is selected as in RTT. The hypothesis of no nonlinear
hidden units (linear model) is tested at a given significance level «. If rejected, a
model with a linear part and one hidden unit is estimated and the approximate
t-values of the parameters computed, approximating the covariance matrix of
the parameters by the outer product of the gradient matrix. The lags with
low t-values are removed and the model re-estimated. The whole procedure is
redone until the hidden unit contains only significant estimates. Subsequently,
the hypothesis of no additional hidden units is tested at the significance level
a/2. If rejected, a model with two hidden units is estimated, and the dimension
of the model reduced by checking the t-values of its estimates as above. The
procedure continues halving the significance level again to /4, /8, ..., stopping
the procedure at the first acceptance of the null hypothesis of no additional
hidden units. Letting the significance level converge to zero as ¢ — oo keeps the
dimension of the model under control.

F

2. Evaluation

Evaluating a model requires, as in Eitrheim and Ter#svirta (1996), to develop
specific LM tests for the hypotesis of no error autocorrelation and parameter
constancy, while additional nonlinearity is already checked when I choose the
number of hidden units. The test for error autocorrelation is based on model
(1.1), where the residuals u; follow an autoregressive process of order r, u; =
Z;Zl ajus_j+ee, er ~ n.i.d.(0, 02). The corresponding LM test for the hypotesis
Hy : a =0 can be carried out in 3 steps as in testing for ¢ against ¢ + 1 hidden
units. As to parameter constancy, I generalize model (1.1) assuming that the
hidden units have constant parameters whereas both (s and as may change
smoothly over time. Therefore B (t) = By + A1 Fj (t,741,¢1) and o = o (t) =
ag + AoFj (t,v1,¢1). The null hypothesis of parameter constancy implies that
F; (t,~v1,c1) = constant for any ¢. I consider three possible functional forms for
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the transitional function Fj:
Fy(ty,e1) = (L+exp{—y (t—c))}) ' —1/2 (2.1)
2
By (ty1.e1) = 1—exp {7y, (t — 1)’} (2:2)

F3(t,71,0) = (Lrexp{—y (t—a)(t —c) (t—cx)})™ —1/2  (23)

I derive a test statistic for the most general case (2.3). To circumvent the iden-
tification problem as in (1.2), I take the first order Taylor expansion of (2.3)
about v; = 0, approximating 3 (t) and o (t) by powers of t. Combining terms
in a similar way than in (1.2), I set up three LM tests, LM;, i = 1,2,3. Their
null hypothesis require that terms involving powers of ¢ from 1 to i, respectively,
have zero coeflicients.

3. Simulations

The simulated series, whose lenght is 7' = 200, are generated by the following
NN DGP with 2 hidden units and a linear part, time-varying parameters and
autocorrelated errors:

ye = Hi(t) (0.07+0.2y; 1 — 0.1y, 2)
+0.53Hy (t) (1 + exp{—17(ys—1 — 1.81ys—> — 0.07))™"  (3.1)
~0.37Hz(t) (1 + exp{—20(ys—1 + 2.4y,—4 +0.07)}) " +uy
Uy = pus_1+ e e~ N(0,1072);p=10,0.1,0.2 (3.2)
Hy(t) = (1+exp(—2(t—100.5)))—0.5

(1 —exp (—2 (j—1) (t — 100.5 (j — 1))2)) i=2,3

5
[

I investigate power and size of the evaluation tools in the cases of time-varying
parameters and constant ones (H;(t) =1 for any j and any ¢ in 3.1), autocorre-
lated and n.i.d. errors (p = 0 in 3.2). When the DGP has constant parameters
(graphs 1-6), the size distortion of the tests for no autocorrelation and parame-
ter constancy are negligible, and its power good even in small samples. This is
a general result since parameter constancy tests have some power towards the
hypothesis of no autocorrelation. Introducing nonconstant parameters (graphs
7-10) biases the size of the tests for no autocorrelation when the null is true,
while their power is still a positive function of p. As to parameter constancy
tests, the power is good both for p =0 and.p = 0.1.

4. Conclusions

I have discussed a statistically consistent specification technique for NN models
which can be applied to a wide range of nonlinear processes. If linearity is not
rejected, a single hidden layer NN model is fitted to the data and evaluated in
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a simple but statistically consistent way. Simulations were run to demonstate
the performances of the evaluation tests when the true DGP is an NN model,
results being satisfactory already at sample size 7' = 200. The whole procedure
can be utilized by model builders interested in nonlinear time series modelling.
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Graphs 1-6. Size discrepancy plots and size-power curves of the test of no
error autocorrelation up to lags 1 (Q1), 2 (Q2), 4 (Q4) and 10 (Q10), and the
three tests for parameter constancy LM, LMs, LMs against smooth structural
change at the sample size T' = 200, for 1000 replications of the series generated
by process (3.1) with constant parameters:
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Graphs 7-10. Size discrepancy plots and size-power curves of the test of no
error autocorrelation up to lags 1 (Q1), 2 (Q2), 4 (Q4) and 10 (Q10), and the
three tests for parameter constancy LM, LMs, LMs against smooth structural
change at the sample size T' = 200, for 1000 replications of the series generated
by process (3.1) with time-varying parameters:
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