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Abstract. Many large-scale spatial data analysis problems involve an
investigation of relationships in heterogeneous databases. In such situations,
instead of making predictions uniformly across entire spatial data sets, in a
previous study we used clustering for identifying similar spatial regions and
then constructed local regression models describing the relationship between
data characteristics and the target value inside each cluster. This approach
requires all the data to be resident on a central machine, and it is not
applicable when a large volume of spatial data is distributed at multiple sites.
Here, a novel distributed method for learning from heterogeneous spatial
databases is proposed. Similar regions in multiple databases are identified by
independently applying a spatial clustering algorithm on all sites, followed by
transferring convex hulls corresponding to identified clusters and their
integration. For each discovered region, the local regression models are built
and transferred among data sites. The proposed method is shown to be
computationally efficient and fairly accurate when compared to an approach
where all the data are available at a central location.

Introduction

The number and the size of spatial databases are rapidly growing in various GIS
applications ranging from remote sensing and satellite telemetry systems, to computer
cartography and environmental planning. Many large-scale spatial data analysis
problems also involve an investigation of relationships among attributes in
heterogeneous data sets. Therefore, instead of applying global recommendation
models across entire spatial data sets, they are varied to better match site-specific
needs thus improving prediction capabilities [1]. Our recently proposed approach
towards such a modeling is to define spatial regions having similar characteristics,
and to build local regression models on them describing the relationship between the
spatial data characteristics and the target attribute [2].

However, spatial data is often inherently distributed at multiple sites and cannot be
localized on a single machine for a variety of practical reasons including physically
dispersed large data sets over many different geographic locations, security services
and competitive reasons. In such situations, the proposed approach of building local
regressors [2] can not be applied, since the data needed for clustering can not be
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centralized on a single site. Therefore, there is a need to improve this method to learn
from large spatial databases located at multiple data sites.

A new viable approach for distributed learning of locally adapted models is explored
in this paper. Given a number of distributed, spatially dispersed data sets, we first
define more homogenous spatial regions in each data set using a distributed clustering
algorithm. The next step is to build local regression models and transfer them among
the sites. Our experimental results showed that this method is computationally
effective and fairly accurate when compared to an approach where all data are
localized at a central machine.

Methodology

Partitioning spatial data sets into regions having similar attribute values should result
in regions of similar target value. Therefore, using the relevant features, a spatial
clustering algorithm is used to partition each spatial data set independently into
“similar” regions. A clustering algorithm is applied in an unsupervised manner
(ignoring the target attribute value). As a result, a number of partitions (clusters) on
each spatial data set is obtained. Assuming similar data distributions of the observed
data sets, this number of clusters on each data set is usually the same (Figure 1). If
this is not the case, by choosing the appropriate clustering parameter values the
discovery of an identical number of clusters on each data set can be easily enforced.

The next step is to match the clusters among the distributed sites, i.e. which cluster
from one data set is the most similar to which cluster in another spatial data set. This
is followed by building the local regression models on identified clusters at sites with
known target attribute values. Finally, learned models are transferred to the remaining
sites where they are integrated and applied to estimate unknown target values at the
appropriate clusters.

2.1. Learning at a single site

Although the proposed method can be applied to an arbitrary number of spatial data
sets, for the sake of simplicity assume first that we predict on the set D2 by using local
regression models built on the set D1. Each of k clusters C1,i , i = 1,...k, identified at D1

(k = 5 at Figure 1), is used to construct a corresppnding local regression model Mi.
To apply local models trained on D1 subsets to unseen data set D2 we construct a

convex hull for each cluster on the data set D1, and transfer all convex hulls to a site
containing unseen data set D2 (Figure 1). Using the convex hulls of the clusters from
D1 (shown with solid lines in Figure 1), we identify the correspondence between the
clusters from two spatial data sets. This is determined by identifying the best matches
between the clusters C1,i (from the set D1) and the clusters C2,i (from the set D2). For
example, the convex hull H1,4 at Figure 1 covers both the clusters C2,5 and C2,4, but it
covers C2,5 in much larger fraction than it covers C2,4. Therefore, we concluded that
the cluster C1,4 matches the cluster C2,5, and the local regression model M4 built on the
cluster C1,4 is applied to the cluster C2,5.

However, there are also situations where the exact matching can not be determined,
since there are significant overlapping regions between the clusters from different
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data sets (e.g. the convex hull H1,1 covers both the clusters C2,2 and C2,3 on Figure 1,
and there is an overlapping region O1). To improve the prediction, the combination of
the local regression models built on neighboring clusters is used on overlapping
regions. For example, the prediction for the region O1 at Figure 1 is made using the
simple averaging of local prediction models learned on the clusters C1,1 and C1,5.

Figure 1. Clusters in the feature space for two spatial data sets: D1 and D2 and convex
hulls (H1,i) from data set D1 (a) transferred to the data set D2 (b).

However, there are also situations where the exact matching can not be determined,
since there are significant overlapping regions between the clusters from different
data sets (e.g. the convex hull H1,1 covers both the clusters C2,2 and C2,3 on Figure 1,
so there is an overlapping region O1). To improve the prediction, averaging of the
local regression models built on neighboring clusters is used on overlapping regions.
For example, the prediction for the region O1 at Figure 1 is made using the simple
averaging of local prediction models learned on the clusters C1,1 and C1,5. In this way
we hope to achieve better prediction accuracy than local predictors built on entire
clusters.

2.2. Learning from multiple data sites

When data from more physically distributed sites are available for modeling, the
prediction can be further improved by integrating learned models from several data
sites. Without loss of generality, assume there are 3 dispersed data sites, where the
prediction is made on the third data set (D3) using the local prediction models from
the first two data sets D1 and D2. The key idea is the same as in the two data sets
scenario, except more overlapping is likely to occur in this scenario. To simplify the
presentation, we will discuss the algorithm only for the matching clusters C1,1, C2,2

and C3,2 from the data sets D1, D2 and D3 respectively (Figure 2).
The intersection of H1,1, H2,2 and C3,2 (region C) represents the portion of the cluster

C3,2, where clusters from all three fields are matching. Therefore, the prediction on
this region is made by averaging the models built on the clusters C1,1 and C2,2, whose
contours are represented in Figure 2 by convex hulls H1,1 and H2,2, respectively.
Making the predictions on the overlapping portions Oi, i = 1,2,3 is similar to learning
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at a single site. For example the prediction on the overlapping portion O1 is made by
averaging of the models learned on the clusters C1,1, C2,2 and C2,3.

Figure 2. Transferring the convex hulls from Figure 3. The alternative representation
two sites with spatial data sets to a third site of the clusters with MBRs

2.3. The comparison to minimal bounding rectangle representation

An alternative method of representing the clusters, popular in database community, is
to construct a minimal bounding rectangle (MBR) for each cluster. The apparent
advantages of this approach are limiting the data transfer further, since the MBR can
be represented by less data points than convex hulls, and reducing the computational
complexity from Θ(n⋅log n) for computing a convex hull of n points to Θ(n) for
computing a corresponding MBR. However, this approach results in large
overlapping of neighboring clusters (see shadowed part on Figure 3). Therefore, using
a convex hull based algorithm leads to a much better cluster representation for the
price of slightly increasing the computational time and the data transfer rate.

Experimental Results

Our experiments were performed using artificial data sets generated using our spatial
data simulator [4] to mix 5 homogeneous data distributions, each having different
relevant attributes for generation of the target attribute. Each data set had 6561
patterns with 5 relevant attributes, where the degree of relevance was different for
each distribution. Spatial clustering is performed using a density based algorithm
DBSCAN [5], which was previously used in our centralized spatial regression
modeling.

As local regression models, we trained 2-layered feedforward neural network
models with 5, 10 and 15 hidden neurons. We used Levenberg-Marquardt [3] learning
algorithm and repeated experiments starting from 3 random initializations of network
parameters. For each of these models, the prediction accuracy was measured using the
coefficient of determination defined as R2 = 1 – MSE/σ2, where σ is a standard
deviation of the target attribute. R2 value is a measure of the explained variability of
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the target variable, where 1 corresponds to a perfect prediction, and 0 to a trivial mean
predictor.

Method R2 ± std R2 value ± std
Global model 0.73±0.01 combine models from

Matching clusters 0.82±0.02
Method

single site all sites
Global models 0.75±0.02 0.77±0.02

Matching clusters 0.89±0.02 0.90±0.02
Matching clusters +

averaging for
overlapping regions

0.87±0.03
Matching clusters + averaging for

overlapping regions 0.90±0.02 0.92±0.03Centralized clustering
(upper bound) 0.87±0.02 Centralized clustering (upper bound) 0.90±0.01 0.92±0.02

Table1. Models built on set D1 Table 2. Models built on sets D1 and D2 applied to D3

applied on D2

When constructing regressors using spatial data from a single site and testing on
spatial data from another site, the prediction accuracies averaged over 9 experiments
are given in the Table 1. The accuracy of local specific regression models
significantly outperformed the global model trained on all D1 data. By incorporating
the model combinations on significant overlapping regions between clusters, the
prediction capability was improved. This indicated that indeed confidence of the
prediction in the overlapping parts can be increased by averaging appropriate local
predictors. In summary, for this data set, the proposed distributed method can
successfully approach the upper bound of centralized technique, where two spatial
data sets are merged together at a single site and when the clustering is applied to the
merged data set.

The prediction changes depending on the noise level, the number and the type of
noisy features (features used for clustering and modeling or for modeling only). We
have experimented with adding different levels of Gaussian noise to clustering and
modeling features (5%, 10% and 15%) for the total number of noisy features ranging
from 1 to 5. (Figure 4).

Figure 4. The influence of different noise levels on the prediction accuracy. We added
none, 1, 2 and 3 noisy modeling features to the 1 or 2 noisy clustering features. We
have experimented with 5%, 10% and 15% of noise level. We used matching clusters.

Figure 4 shows that when a small noise is present in features (5%, 10%), even if
some of them are clustering features, the method is fairly robust. However, by
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increasing the noise level (15%), the prediction accuracy starts to decrease
significantly.

Finally, when models from 2 distributed data sites are combined to make prediction
on the third spatial data set, the prediction accuracy was improved more than when
considering only the models from a single site (Table 2). The influence of the noise is
similar in this case, and the experimental results are omitted for lack of space.

Conclusions

Experiments on two and three simulated heterogeneous spatial data sets indicate that
the proposed method for learning local site-specific models in a distributed
environment can result in significantly better predictions as compared to using a
global model built on the entire data set. When comparing the proposed approach to a
centralized method (all data are available at the single data site), we observe no
significant difference in the prediction accuracy achieved on the unseen spatial data
sets. The communication overhead of data exchange among the multiple data sites is
small, since only the convex hulls and the models built on the clusters are transferred.
Furthermore, the suggested algorithm is very robust to small amounts of noise in the
input features.

Although the performed experiments provide evidence that the proposed approach is
suitable for distributed learning in spatial databases, further work is needed to
optimize methods for combining models in larger distributed systems. We are
currently extending the method to a distributed scenario with different sets of known
features at various databases.
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