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Abstract. Given a one dimensional SOM with a monotonically de-

creasing neighbourhood and an input distribution which is not Lebesque

continuous, a set of su�cient conditions and a Theorem are stated which

ensure probability one organisation of the neuron weigh ts. This leads to

a rule for choosing the number of neurons and width of the neighbour-

hood to improve the c hances of reaching an organised state in a practical

implementation of the SOM.

1. Introduction

Kohonen's Self-Organising Map (SOM) algorithm [7] was originally conceived
as a heuristic description of the process of self-organisation which occurs dur-
ing learning in parts of the brain, especially the cortex. It �nds widespread
application in many di�erent areas such as clustering, vector quantization, and
data mining where di�erent topologies of the SOM are used, with di�erent
types of input data. Analysing the self-organising mechanism of the SOM has
proved di�cult, and for the most part the only results available are for the one
dimensional case.

In the one dimensional SOM there are a total of N neurons and with each
neuron i is associated a neuron weight xi 2 R. The neuron weight vector
is denoted by X = (x1; x2; : : : ; xN ). The input is assumed to be a random
variable ! 2 R with a probability distribution F (!). A t iterationt a winner

neuron v(t) is chosen such that

v(t) = arg min
1�i�N

j!(t)� xi(t)j: (1)

Each neuron weigh txi(t); i = 1; 2; : : : ; N is then updated as

xi(t+ 1) = xi(t) + �(t)h(ji � v(t)j)(!(t) � xi(t)); (2)

where the gain �(t), with 0 < �(t) < 1 during the training phase is normally
a decreasing function with time. In what follows it is assumed that �(t) �
�m > 0;8 t. The function h(ji � v(t)j) with 0 � h(ji � v(t)j) � 1 is referred
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to as the neighbourhood and h(j) decreases with increasing j. In what follows
h(ji � v(t)j) will be written as h(i; v(t)). In general h satis�es the following
four conditions a) h(i; i) = 1, b) h(i; i �W ) = hm > 0, c) h(i; j) = 0 when
ji� jj > W , d) h(i; j) � h(i; k), for ji� jj > ji�kj, whereW is the width of the
neighborhood and hm its minimum non zero value. In practise under a wide
variet y of conditions,that is for di�erent F , �, and h it has been found that
the weigh ts will converge to the ordered con�guration

D = fX : x1 < x2 < : : : < xNg
[

fX : x1 > x2 > : : : > xNg: (3)

No general analysis of the SOMs self-organising abilit y exists and little
is kno wabout the essen tial conditions required for self-organisation. In the
one dimensional case the organised con�guration D of the neuron weigh tsis
absorbing, and in [2] it has been shown that from any initial condition where
xi 6= xj ; i 6= j, W = 1, and a uniform F that the w eights will almost surely
converge toD. This result was further generalised in [1], [6], [3], [4] and [8]. All
of the latter consider X(t) as a Markov process and to prove self-organisation
it is sho wn that9 T <1 and � > 0 for which,

�X(0)(f : �D � Tg) � � 8 X(0); (4)

or thatthe probabilit y �X(0), of �nding sets of samples  = f!(0); !(1); : : :g
which take the neuron weights X from all initial conditions X(0) to the organ-
ised con�guration in a �nite time �D is non zero. In [2], [1] and [6] either a
uniform F or a di�use F has been assumed. The generalisation of these results
is limited by the existence of situations where there is a tie for winner. An
example of when this may occur is xi(t) = xj(t); i 6= j and

i; j = arg min
1�k�N

j!(t)� xk(t)j: (5)

In this situation Sadeghi [8] de�ned the winner in such a way that the instability
resulting from this tie no longer existed and was able to prove self-organisation
for a one dimensional SOM with any form of decreasing neighbourhood func-
tion, and a quite general distribution of the input. The only restriction on the
distribution of the input w asthat it must be con tinuous withrespect to the
Lebesque measure, which means for any set A if,

�L(A) = 0; then F (A) = 0; (6)

where �L(A) is the Lebesque measure of A. F rom a theoretical point of view
this is not such a big restriction, but for the practical implementation of the
SOM it is limiting. A result of Sadedghi's analysis based on Lebesque continuity
of F is that the weigh ts organise independent of the number of neurons N and
width W of the neighbourhood if W > 0.

Consider what happens in practise where the support SM = f! : f(!) > 0g
of the input consists of a �nite number of points M , let SM be given b y,

SM = f!1; : : : ; !Mg; !i < !j ; i 6= j: (7)

 D-Facto public., ISBN 2-930307-00-5, pp. 261-266B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)



F is not Lebesque continuous on SM . Consider the very simple case of M = 2,
W = 1 and X(0) such that,

!1 < x1(0) < x2(0) < x3(0) < !2 < x4(0) < x5(0) < x7(0) < x6(0):
(8)

For !(t) = !1 then v(t) = 1 and for !(t) = !2 then v(t) = 3; 4, this is true
8 t � 0, hence x6(t) = x6(0) and x7(t) = x7(0) and the weights can nev er
reac h an organised con�guration. In [3] it was sho wn for this example ifW � 7
(i.e. W � N) then thew eigh ts will organise with probability one. F rom this
simple exampleit is ob vious in thecase where F is not Lebesque continuous
that self-organisation depends at least on the width W of the neighbourhood
and the number of neurons N . It should be emphasised that this is always
the case in practise. In what follows a set of conditions on the support of the
input distribution, which is not Lebesque continuous, is described along with a
Theorem which speci�es the relationship between N;W;M which are su�cient
to ensure probability one self-organisation of the neuron weights. This result is
a generalisation of the cases analysed in [3], [4], and apply for a neighbourhood
where h(i) � h(j) + �, for i < j and � > 0 is the smallest di�erence betw een
any two values of the neighbourhood.

2. Conditions on the Support of F

Given the support SM of equation (7) of the distribution F the question is to
de�ne conditions that it must satisfy to ensure probability one self-organisation
of the neuron w eigh ts. These conditions are de�ned in terms of in tervals
An; n = 0; 1 : : : based on SM . Begin by de�ning a basic interval A0 = [�0; �0]
around !i 2 SM such that,

�0 < !i < �0; (9)

where the distance 
0 = �0 � �0 can be made arbitrarily small. The de�nition
of A0 is completely independent of the SOM, and an interval A0 can be de�ned
for every !i 2 SM . T oavoid unnecessary complication of the notation the
intervals A0 are not indexed for each !i. Consider tw oA0 intervals, the �rst
one the A0 interval of!i the second the A0 interval of !j . Assume that i < j
and denote the A0 interval on the lower valued part of the real line by Al0 (i.e.
the A0 interval of !i) and the A0 interval on the higher valued part of the real
line by Ah0 (i.e. the A0 in terval of!j). All parameters associated with Al0; A

h
0

are superscripted with l; h respectively. F urther assume that they satisfythe
follo wing condition,

max(
l0; 

h
0 )

�h0 � �l0
<

�m�

1� �mhm
; (10)

and �h0��
l
0 > 0 is the distance betw een the intervals, �m is the minimum value

of �(t), hm the minimum non-zero value of h and � the smallest di�erence
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betw een t wo values of h. If this condition is satis�ed call the smallestclosed
interval containing Ah0 ; A

l
0 byA1 = [�1; �1], where �1 = �l0 and �1 = �h0 . Figure

1 shows an illustration of this interval. Note that for SM there can be many
pairs !i; !j satisfying this condition and hence many intervals can be referred to
as an intervalA1. In a similar way a general intervalAn+1 = [�n+1; �n+1] can be
de�ned in terms of tw oAn intervals. As before Aln = [�ln; �

l
n] is the An interval

on the low er valued part of the real line andAhn = [�hn; �
h
n ] is the An interval

on the higher valued part of the real line. Again parameters associated with
Aln; A

h
n are superscripted with l; h respectively with �ln = �n+1 and �

h
n = �n+1,

and to form an interval An+1 they satisfy the following condition,

max(
ln; 

h
n)

�hn � �ln
<

�m�

1� �mhm
; (11)

where �hn � �ln > 0 is the distance betw eenthe in tervals. By replacing the
subscripts 0 by n and 1 by n + 1 in Fig. 1 an illustration of an intervalAn+1

is obtained. Figure 2 shows possible in tervals An; n = 1; 2; 3 for an example
support S18. It is easily deduced that an in tervalAn is composed of 2n, A0

intervals, which of course means de�ning An on SM is only possible if M � 2n.
In the next section a theorem of self-organisation is stated which shows the

conditions speci�ed in the de�nition of an interval An are su�cient to prove
probability one self-organisation of the weights.

3. A Proof of Self-Organisation

As stated in the in troduction the most successful proofs of self-organisation
in the SOM are based on �nding sequences of inputs, which take the neuron
weights from all initial conditions to an organised con�guration in a �nite time
with a positiv eprobability. The following Theorem states the conditions on
the SOM for which such sequences can be found, giv en an interval An. The
theorem is then discussed and an indication given as to how it is proved.

Theorem 1 Given an interval An and N � nW , ther e exists T < 1 and

� > 0 for which,

�X(0)(f : �D � Tg) � �; (12)

8 X(0), where �D is the �rst entry time of X into D.

What this Theorem states is that for an interval An any SOM, with a decreasing
neighbourhood function, will almost surely reach an organised state if the total
number of neurons N and the width W of the neighbourhood are such that,

N=W � n: (13)

In the case analysed by Sadeghi [8] where the support of F is Lebesque con-
tinuous it is sho wnthat self-organisation occurs independent of N and W if
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Figure 1: Illustration of an interval A1 with the various parameters labelled.

W � 1. In this case when the support of F is not Lebesque con tinuous the
su�cient conditions for self-organisation depend very much on N andW . Such
a result has meaning in a general practical case ; to de�ne an intervalAn re-
quires at least that M � 2n thus it would seem in a practical situation given
SM that N;W should be chosen as,

N=W � log2M: (14)

The proof of this Theorem, fully described in [5] is conceptually quite simple
being based on an inductive arguement. The �rst step is to assume that for an
intervalAn with N � nW and for all X(0) that by choosing !(t) 2 Aln�1 there
is t1 < 1 for which xi(t1) 2 Aln�1; 8 i. Given the w eigh tsin this state an
assumption is made on Ahn�1 where for !(t) 2 A

h
n�1 there is t2 <1 for which

xi(t2) 2 A
h
n�1; 8 i and either xN (t2) < xi(t2);8 i 6= N or x1(t2) < xi(t2);8 i 6=

1. Using once again the assumption on Aln�1 means for !(t) 2 Aln�1 there is
some t3 < 1 for which xi(t3) 2 Aln�1. Based on the fact that at t2 either
neuron N or 1 is the winner it can be shown that at t3 the neurons are in
an organised con�guration. Thus the assumptions made on Aln�1; A

h
n�1 are

su�cient for self-organisation when N � nW . The next step of the inductive
arguement is to sho w thatwhen these assumptions are true then an interval
An+1 is su�cient for self-organisation when N � (n+1)W . Finally it is shown
that an intervalA2 is su�cient for self-organisation when N � 2W . The result
of the Theorem follows from the normal inductive arguement.

4. Conclusion

Given F which is not Lebesque continuous with support SM . If it is possible to
de�ne a set of conditions on SM in terms of an interval An then for an SOM with
a monotonically decreasing neighbourhood function almost sure convergence to
an organised con�guration occurs for all X(0) if N=W � n. This theoretical
result can be stated in a form signi�cant in practise, in that to increase the
likelihood of the SOM reac hing an organised con�guration N;W should be
chosen such that N=W � log2M .
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Figure 2: A support S18 and possible intervals An; n = 1; 2; 3 indicated by dark
horizontal lines. V ertical dark lines signify an interval A0 associated with the
!i to which it is joined by the vertical dotted lines.

References

[1] Catherine Bouton and Gilles Pag�es. Self-organization and a. s. convergence
of the one-dimensional Kohonen algorithm with non-uniformly distributed
stimuli. Sto chastic Processes and Their Applications, 47:249{274, 1993.

[2] Marie Cottrell and Jean-Claude F ort. �Etude d'un processus d'auto-
organisation. A nnalesde l'Institut Henri Poincar�e, 23(1):1{20, 1987. (in
F renc h).

[3] John A. Flanagan. Self-organization in Kohonen's SOM. Neural Networks,
9:1185{1197, 1996.

[4] John A. Flanagan. Su�cient conditions for self-organisation in the one
dimensional SOM with a reduced width neighbourhood. Neurocomputing,
21:51{60, 1998.

[5] John A. Flanagan. Self-organisation in the one dimensional SOM with a
decreasing neighbourhood. Revised and resubmitted to Neural Netw orks,
1999.

[6] Jean-Claude Fort and Gilles Pag�es. On the a.s. convergence of the Koho-
nen algorithm with a general neighbourhood function. Annals of Applied

Probability, 5(4):1177{1216, 1995.

[7] Teuvo Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, 1995.
(Second Extended Edition 1997).

[8] A.A. Sadeghi. Self-organisation and con vergenceof the one dimensional
Kohonen algorithm. In Pr oceedingsESANN98, pages 173{178, Brussels,
1998. D Facto ed.

 D-Facto public., ISBN 2-930307-00-5, pp. 261-266B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)


