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Abstract. Given a one dimensional SOM with a monotonically de-
creasing neighbourhood and an input distribution which is not Lebesque
continuous, a set of sufficient conditions and a Theorem are stated which
ensure probability one organisation of the neuron weigh ts. This leads to
a rule for choosing the number of neurons and width of the neighbour-
hood to improve the chances of reahing an organised state in a practical
implementation of the SOM.

1. Introduction

Kohonen’s Self-Organising Map (SOM) algorithm [7] was originally conceived
as a heuristic description of the process of self-organisation which occurs dur-
ing learning in parts of the brain, especially the cortex. It finds widespread
application in many different areas such as clustering, vector quantization, and
data mining where different topologies of the SOM are used, with different
types of input data. Analysing the self-organising mechanism of the SOM has
proved difficult, and for the most part the only results available are for the one
dimensional case.

In the one dimensional SOM there are a total of IV neurons and with each
neuron ¢ is associated a neuron weight z; € R. The neuron weight vector
is denoted by X = (z1,%2,...,zn). The input is assumed to be a random
variable w € R with a probability distribution F(w). A t iterationt a winner
neuron v(t) is chosen such that

v(t) = arg min|w(t) — z;(1)]. (1)
1<i<N

Each neuron weigh tx;(t), i =1,2,..., N is then updated as
zi(t+1) = zi(t) + at)h(|i —v@)])(w(t) — z:(t)), (2)

where the gain a(t), with 0 < a(t) < 1 during the training phase is normally
a decreasing function with time. In what follows it is assumed that «(t) >
ap > 0,V t. The function h(]i — v(t)|) with 0 < h(]i — v(t)]) < 1 is referred
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to as the neighbourhood and h(j) decreases with increasing j. In what follows
h(]i — v(t)]) will be written as h(i,v(t)). In general h satisfies the following
four conditions a) h(i,i) = 1, b) h(i,i £ W) = hy, > 0, ¢) h(i,j) = 0 when
li—j] > W,d) h(i,j) < h(i, k), for |i —j| > |i — k|, where W is the width of the
neighborhood and h,, its minimum non zero value. In practise under a wide
variety of conditions,that is for different F', «, and h it has been found that
the weigh ts will corverge to the ordered configuration

D:{X:.’L’1<.Z’2<...<1}N}U{XZ.’L’1>.’L'2>...>.’L’N}. (3)

No general analysis of the SOMs self-organising abilit y exists and little
is kno wabout the essen tial conditions required for self-organisation. In the
one dimensional case the organised configuration D of the neuron weigh tsis
absorbing, and in [2] it has been shown that from any initial condition where
x; # % # j, W =1, and a uniform F' that the w eighs will almost surely
converge to D. This result was further generalised in [1], [6], [3], [4] and [§]. All
of the latter consider X(¢) as a Markov process and to prove self-organisation
it is sho wn thatd T' < co and § > 0 for which,

ﬂ'x(o)({w :7p < T}) >0 vV X(0), (4)

or thatthe probabilit y 7x (), of finding sets of samples 1) = {w(0),w(1),...}
which take the neuron weights X from all initial conditions X(0) to the organ-
ised configuration in a finite time 7p is non zero. In [2], [1] and [6] either a
uniform F or a diffuse F' has been assumed. The generalisation of these results
is limited by the existence of situations where there is a tie for winner. An
example of when this may occur is 2;(t) = x;(t),i # j and

i,j = arg min|w(t) — zx(t)]| (5)
1<k<N

In this situation Sadeghi [8] defined the winner in such a way that the instability
resulting from this tie no longer existed and was able to prove self-organisation
for a one dimensional SOM with any form of decreasing neighbourhood func-
tion, and a quite general distribution of the input. The only restriction on the
distribution of the input w asthat it must be con tinuous withrespect to the
Lebesque measure, which means for any set A if,

ur(A) = 0, then FI(A) = 0, (6)

where py (A) is the Lebesque measure of A. From a theoretical poirt of view
this is not such a big restriction, but for the practical implementation of the
SOM it is limiting. A result of Sadedghi’s analysis based on Lebesque contin uit y
of F'is that the weigh ts organise independernt of the number of neurons NV and
width W of the neighbourhood if W > 0.

Consider what happens in practise where the support Sy = {w : f(w) > 0}
of the input consists of a finite number of points M, let Sy; be given b y,

Su = {wi,...,wm}, w;<wj, i # 7. (7)
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F' is not Lebesque continuous on Sy;. Consider the very simple case of M = 2,
W =1 and X(0) such that,

w1 < 21(0) < 22(0) < 23(0) < w2 < 24(0) < 25(0) < z7(0) < x6(0).

(8)

For w(t) = wy then v(t) = 1 and for w(t) = wo then v(t) = 3,4, this is true
YV t > 0, hence z6(t) = z6(0) and z7(t) = z7(0) and the weights can nev er
reach an organised configuration. In [3] it was sho wn for this example ifi > 7
(i.e. W > N) then thew eigh ts will organise with probabiliy one. From this
simple examjtlds ob vious in thecase where F' is not Lebesque continuous
that self-organisation depends at least on the width W of the neighbourhood
and the number of neurons N. It should be emphasised that this is always
the case in practise. In what follows a set of conditions on the support of the
input distribution, which is not Lebesque continuous, is described along with a
Theorem which specifies the relationship between IV, W, M which are sufficient
to ensure probability one self-organisation of the neuron weights. This result is
a generalisation of the cases analysed in [3], [4], and apply for a neighbourhood
where h(i) > h(j) + ¢, for i < j and ¢ > 0 is the smallest difference betw een
any two values of the neighbourhood.

2. Conditions on the Support of F

Given the support Sy of equation (7) of the distribution F' the question is to
define conditions that it must satisfy to ensure probability one self-organisation
of the neuron w eigh ts. These conditions are defined in terms of intervals
Ap,n=0,1... based on Sps. Begin by defining a basic interval Ag = [uo, Vo]
around w; € Sy such that,

o < wi < Vo, 9)

where the distance vy = vy — o can be made arbitrarily small. The definition
of Ay is completely independent of the SOM, and an interval Ay can be defined
for every w; € Sy. T oavoid unnecessary complication of the notation the
intervals Ag are not indexed for each w;. Consider tw 0Ag intervals, the first
one the Ay interval ofw; the second the Ay interval of w;. Assume that ¢ < j
and denote the Ay interval on the lower valued part of the real line by A} (i.e.
the Ay interval of w;) and the Ay interval on the higher valued part of the real
line by A% (i.e. the Ay interval ofw;). All parameters associated with A}, A%
are superscripted with [, h respectively. F urther assume that they satisfy
follo wing condition,

max (v, 7¢) o)
pl —vh 1—amhm’

(10)

and ph — vl > 01is the distance betw een the ittervals, o, is the minimum value
of a(t), hy, the minimum non-zero value of h and ¢ the smallest difference
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betw een t w values of h. If this condition is satisfied call the smatlested
interv al comtaining A%, A by Ay = [p1, 1], where puy = pl and vy = vf. Figure
1 shows an illustration of this interval. Note that for Sj; there can be many
pairs w;, w; satisfying this condition and hence many interv als can be referred to
as an interval A;. In a similar way a general interval A, 11 = [ftn+1, Vn+1] can be
defined in terms of tw 0A,, intervals. As before AL, = [u!,v!] is the A4, interval
on the low er valued part of the real line andA” = [u” V"] is the A,, interval
on the higher valued part of the real line. Again parameters associated with
Al A" are superscripted with [, h respectively with p!, = p,41 and v = v, 44,
and to form an interval A, they satisfy the following condition,

max(r, o) amd )

)
ulh — vk 1 — amhy,

where p — vl > 0 is the distance betw eenthe intervals. By replacing the

subscripts 0 by n and 1 by n + 1 in Fig. 1 an illustration of an interval Aj,;
is obtained. Figure 2 shows possible interwals A,,n = 1,2,3 for an example
support Sig. It is easily deduced that an intervalA,, is composed of 2", Ay
intervals, whic of course means defining A,, on Sy, is only possible if M > 2™,

In the next section a theorem of self-organisation is stated which shows the
conditions specified in the definition of an interval A,, are sufficient to prove
probability one self-organisation of the weights.

3. A Proof of Self-Organisation

As stated in the introduction the most successful proofs of self-organisation
in the SOM are based on finding sequences of inputs, which take the neuron
weights from all initial conditions to an organised configuration in a finite time
with a positiv eprobability. The following Theorem states the conditions on
the SOM for which such sequences can be found, given aninterval A,. The
theorem is then discussed and an indication given as to how it is proved.

Theorem 1 Given an interval A,, and N < nW, there ezxists T < oo and
& > 0 for which,

mx)({¢ : ™ <T}) >0, (12)
V X(0), where Tp is the first entry time of X into D.

What this Theorem states is that for an interval A,, any SOM, with a decreasing
neighbourhood function, will almost surely reach an organised state if the total
number of neurons NV and the width W of the neighbourhood are such that,

N/W < n. (13)

In the case analysed by Sadeghi [8] where the support of F' is Lebesque con-
tinuous it is sho wnthat self-organisation occurs independent of N and W if
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Figure 1: Illustration of an interval A; with the various parameters labelled.

W > 1. In this case when the support of F' is not Lebesque con timous the
sufficient conditions for self-organisation depend very much on NV and W. Such
a result has meaning in a general practical case ; to define an interval A,, re-
quires at least that M > 2™ thus it would seem in a practical situation given
Sy that N, W should be chosen as,

N/W < log, M. (14)

The proof of this Theorem, fully described in [5] is conceptually quite simple
being based on an inductive arguement. The first step is to assume that for an
interval A,, with N < nW and for all X(0) that by choosing w(t) € A!, | there
is t; < oo for which x;(t;) € AL _,, Vi. Given the w eigh tin this state an
assumption is made on A”_, where for w(t) € A"_, there is t2 < oo for which
zi(t2) € AP _,, Vi and either zx(t2) < z;(t2),V i # N or z1(t2) < m;(t2),V i #
1. Using once again the assumption on A!, | means for w(t) € A, there is
some t3 < oo for which z;(t3) € Al |. Based on the fact that at t» either
neuron N or 1 is the winner it can be shown that at ¢3 the neurons are in
an organised configuration. Thus the assumptions made on AL_, A" | are
sufficient for self-organisation when N < nI¥/. The next step of the inductive
arguement is to sho w thatwhen these assumptions are true then an interval
A, 41 is sufficient for self-organisation when N < (n+ 1)W. Finally it is shown
that an interval A, is sufficient for self-organisation when N < 2W. The result

of the Theorem follows from the normal inductive arguement.

4. Conclusion

Given F which is not Lebesque continuous with support Sps. If it is possible to
define a set of conditions on Sy in terms of an interval A,, then for an SOM with
a monotonically decreasing neighbourhood function almost sure convergence to
an organised configuration occurs for all X(0) if N/W < n. This theoretical
result can be stated in a form significant in practise, in that to increase the
likelihood of the SOM reac hing an organised configuration N, W should be
chosen such that N/W < log, M.
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Figure 2: A support Sig and possible intervals A,,,n = 1,2, 3 indicated by dark
horizontal lines. V ertical dark lines signify an iterval Ay associated with the
w; to which it is joined by the vertical dotted lines.
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