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Abstract

The Self-Organizing Map, SOM, is a widely used tool in exploratory
data analysis. Visual inspection of the SOM can be used to list potential
dependencies between variables, that are then validated with more prin-
cipled statistical methods. In this paper we discuss the use of the SOM
in searc hing for dependencies in the data. We poin t out that simple use
of the SOM may lead to excessive number of false h ypotheses.We formu-
late the exact probability densit y model for which the SOM training gives
the Maximum Likelihood estimate and show how the model parameters
(neighborhood and kernel width) can be chosen to avoid o ver�tting.The
conditional distributions from the true densit ymodel o�er a consisten t
w ay to quantify and test the dependencies between variables.

1 Introduction

The Self-Organizing Map, SOM, [3] has established its position as a widely ap-
plied tool in data-analysis and visualization of high-dimensional data. Within
other statistical methods the SOM has no close counterpart, and thus it pro-
vides a complementary view to the data. The SOM carries some similarities
to multidimensional scaling methods (such as the Sammon's method), principal
curv eprojection and other non-linear laten tvariable methods. F or a recen t
review see e.g. [2]. Compared to the SOM, the other methods are typically bet-
ter understood theoretically, as they are based on optimizing some well de�ned
objective functions or model �tting criteria, while the SOM is de�ned construc-
tively by the training algorithm and has its roots in a simpli�ed model for the
self-organization process inbiological neural net works. The SOM is, how ev er,
the most widely used method in this category, because it provides some notable
advantages o ver the alternatives. These include, e.g., ease of use, especially for
inexperienced users, and very in tuitiv edisplay of the data projected on to a
regular tw o-dimensional slab, as on a sheet of a paper.

The main potential of the SOM is in exploratory data analysis, which dif-
fers from standard statistical data analysis in that there are no presumed set
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of hypotheses that are validated in the analysis. Instead, the hypotheses are
generated from the data in the data-driven explor atoryphase and validated in
the con�rmatory phase.

There are some problems where the exploratory phase may be su�cient alone,
such as visualization of data without more quantitativ e statistical inference upon
it. In practical data analysis problems the most common task is to search for
dependencies between variables. In such a problem, the SOM can be used for
getting insight to the data and for the initial search of potential dependencies.
In general the �ndings need to be validated with more classical methods, in
order to assess the con�dence of the conclusions and to reject those that are not
statistically signi�cant.

In this contribution we discuss the use of the SOM in searching for dependen-
cies in the data. First we formulate the probability density model for which the
SOM training gives the Maximum Likelihood estimate, and give a method for
evaluating the normalized probability values from the model. This allows using
standard methods like cross-v alidation toselect the model complexity (neigh-
borhood and kernel widths) so that the model is not over�tted to the data
sample.

Then w eshow how conditional probabilities from the model can be com-
puted to estimate the dependencies between variables. We point out that visual
inspection of the SOM may lead to excessive number of false hypotheses, as
information about independence of the variables may be distributed in a w ay
that is not easily visible on the map.

In many alternatives for the SOM these issues are muc h easier to cope with,
especially when the discontinuous Voronoi regions are replaced by regular con-
tinuous kernels, such as in the Generative Topographic Mapping [1], and in the
Bayesian SOM [5], where the neighborhood is replaced by Gaussian smoothing
kernel on the unit positions.

2 Probability Density Estimate by the SOM

In this section we deriv e the probability density model, for which the minimiza-
tion of the SOM cost function giv esmaximum likelihood estimate. The cost
function, that is stochastically minimized by the SOM, is [4]

E =
NX
n=1

MX
r=1

H(b(x)� r)kxn �mrk2; (1)

where X = fxng; n = 1; : : : ; N is the discrete data sample, r is the index (or
position) of a unit in the SOM, b(x) is the index of the best matching unit for x,
mr is the reference vector of the unit r, and H() is the neighborhood function.

The Maximum Likelihood (ML) estimate is based on maximizing the prob-
abilit y of the data given the model, which is equal to minimization of the neg-
ative log-likelihood cost function. Let p(X jm;H) be the likelihood of the data
X from the SOM model with codebook m and neighborhood H . The negative
log-likelihood is L = � log p(X jm;H) and by setting it proportional to the cost
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function in Eq.1 yields

p(X jm;H) = Z 0 exp(��E) = Z 0 exp(��
X
n

X
r

H(b(x)� r)kxn �mrk2): (2)

Here we have replaced the normalizing constant Z 0 and the width of the kernels
� that are not needed in the ML estimate of the codebook m, but are necessary
for the complete density model. Let us de�ne the basic SOM density kernel as

'(x; r;H) = exp
�
��H(b(x)� r)kxn �mrk2

�
: (3)

It is a Gaussian kernel centered at unit r with standard deviation (2�H(b(x)�
r))�1=2, which is larger for the Voronoi cells far aw ay on the map, as illustrated
in Fig. 1. The density of x can now be written as

p(xjm;H) = Z
Y
r

'(x; r;H) (4)

and the likelihood in Eq. 2 is p(X jm;H) = ZN
Q

n

Q
r '(x

n; r;H).
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Figure 1: Example of density estimate due to the SOM. Gaussian neighborhood width
and � w ere chosen to give best �t to validation data. The plots show three di�erent
kernels '(x; r;H), cen tered on the map units that are marked by circles. The last
plot sho ws the resulting density estimate, which is the product of all the 18 di�erent
kernels.

To compare the likelihood of models with di�erent neighborhoods the nor-
malizing constant Z needs to be evaluated from equationZ

p(xjm;H)dx = Z
X
r

Z
x2Vr

Y
s

'(x; s;H)dx = 1; (5)

where the in tegration over x is decomposed to sum of in tegrals over all the
V oronoi cells.Due to the discontinuity of the kernels in the Voronoi cell bound-
aries the integrals cannot be computed in closed form, but they can easily
be approximated numerically with rejection sampling Monte Carlo method
as follo ws. 1) F or each cell r, dra wL samples from proposition distribution
Q(x) = '(x; r;H). 2) Accept a sample x if it is inside the Voronoi cell Vr
with probability

Q
s '(x; s;H)=Q(x). 3) The volume

R
x2Vr

Q
s '(x; s;H)dx is

the fraction Laccepted=L of the volume of Q, which is (�=�)d=2 where d is the
dimension of the data space. With the normalized likelihood one can choose
the neighborhood and � to maximize the likelihood of the training data, or
preferably, if the model has large number of free parameters, to maximize the
likelihood of validation data. Fig. 2 shows the SOM density models for various
neighborhood sizes, with ML estimate for �.
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Figure 2: SOM density models for di�erent widths � of the Gaussian neighborhood.
F rom the total likelihood of validation data the optimal neighborhood can be chosen
to avoid o ver�tting.The negative log-lik elihoods are denoted by Lt for training data
and Lv for validation data.

3 SOM and Dependence Between Variables

In practical data analysis problems the most common task is to search for de-
pendencies betw een v ariables.Statistical dependence means that the value of a
variable can be predicted to a certain accuracy from one or more of the other
variables, or in other words, the conditional distributionof the v ariable is de-
pendent on the values of the other variables.

The most simple goal is to look for pairwise dependencies, where a variable
depends only on one other variable. For such a problem the advan tage of the
SOM is rather marginal, as simple correlation analysis is su�cient for linear case
and in non-linear case direct viewing or modelling of the pairwise data samples
is no more laborious than pairwise visual inspection of the component planes.

The tough problem is to search for non-linear dependencies between multiple
variables. F rom the SOM these are searc hed by looking for regions on the
map with correlating values for assumed dependent variables. Such a region
is interpreted as a hypothesis that the v ariables are dependent giv en that the
other variables are close to the corresponding values in the reference vectors.

It is very important to notice that any conclusions drawn from models over-
�tted to the data sample are not guaranteed to generalize to any other situation.
Thus analysis of statistical dependencies requires some way, heuristic or more
disciplined, to avoid over�tting, as in all statistical modelling.

Given that the model is not badly over�tted, the problem in visual inspection
of the SOM is that in general the dependencies betwe en variables can not be seen

from local analysis of the SOM. That is, even if v ariables, say, x1 and x2 both
ha velarge values at map unit r, that alone does not sho wthat the variables
ha ve an y mutual dependence. As a simple example, consider tw o-dimensional
uniform distribution x1; x2 � U(�1; 1). A 2 � 2 SOM with zero neighborhood
w ould have component planes (in any order of the columns and rows)

M1 =

�
�0:5 �0:5
0:5 0:5

�
M2 =

�
�0:5 0:5
�0:5 0:5

�
(6)

The coincidence of high values in unit M22 and low values in M11 are only
result of the vector quantization. T o see that high values inM22 do not indicate
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dependence between x1 and x2, one must observe that high value for x1 occurs
also in M12 with low value for x2 (i.e., tallied over the map, high value for x1
indicates either high or low value for x2).

In high dimensional space the visual inspection of the dependencies becomes
more di�cult, when the map folds and the variable ranges are distributed around
the map, as illustrated in the Figs.3 and 4.
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Figure 3: Example of SOM trained on purely random data. The independence of
the variables in the component level display is not trivial to observe. One might, for
example, erroneously conclude that high values of x3 w ould indicate low values of x2.
Here the neighborhood is trained down to zero.
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Figure 4: Example of real data analysis. In the case study ,the dependence of Air
freshness of the other variables was investigated. In the �nal analysis all hypotheses
w ere rejected using methods like RBF models, Bayesian neural netw orks, etc.

Quantitativ e analysis can be carried out by computing the conditional distri-
butions from the density model. From the joint probability in Eq.4 conditional
distribution for variable xj can be numerically computed as p(xj jxnj ;m;H) =
p(xjm;H)=

R
p(xjm;H)dxj , where xnj denotes the vector x with element j ex-

cluded. The prediction of xj can similarly be computed as the conditional mean
E[xj jxnj ;m;H).

Reducing the kernel width to zero, � !1, gives an important special case.
The conditional density is then sharply peaked at the value of the "outputs" xj
in the best matching unitfor the "inputs" xnj . The posterior mean E[xj jxnj ]
giv es the same value as the nearest neighbor regression with the SOM reference
vectors, producing piecewise constant estimate with large variance.

In Fig. 5 the 3D random data in Fig. 3 is analyzed by 6�6 SOM. The optimal
width of the Gaussian neighborhood function is � = 4:2, which is rather large,
suggesting independent variables. F rom the �gures it is clear that true condi-
tional density is better estimate than the nearest neighbor rule and the model
with correct complexity gives muc h better results.With visual inspection of the
map it is di�cult to perceive the mean or shape of the conditional distributions
and thus the reliability of the conclusions is rather impossible to assess.
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Figure 5: Conditional densities from a SOM trained on random independent data.
The left �gures show the conditional density and the nearest neighbor prediction for
optimal neighborhood � = 4:2, and the right �gures for small neighborhood � = 0:01,
respectiv ely.

4 Conclusions

We have discussed some di�culties in using SOM for analysing the statistical
dependencies between variables. Even in lack of any dependence, high or lo w
values of the variables on the map coincide, so that visual inspection easily
suggests dependence. Thus it is necessary to validate the hypotheses using
other statistical methods.

We derived the probability density model behind the SOM, and show ed how
the correct model complexity can be determined and the potential dependencies
analyzed. Analysis of the model requires tedious numerical integrations, so that
other more direct models may be more appropriate for the task.

Ultimately, to produce a SOM that is optimally suited for visual inspection,
w e conclude that the model parameters should be chosen so that the units
contributing to the conditional distribution are located near each other on the
map. Then the visually observed region would also be responsible for modelling
that volume in the data space. This will be addressed in further study.
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