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Abstract. The task of forecasting a time series over along horizon
is commonly tackled b y iterating one-step-ahead predictors. Despite the
popularity that this approach gained in the prediction communit y, its de-
sign is still plagued by a number of important unresolved issues, the most
important being the accumulation of prediction errors. We introduce a
local method to learn one-step-ahead predictors with the aim of reducing
the propagation of errors during the iteration. For each prediction, our
method selects the structure of the local approximator using, in a local
version, well-kno wn results of dynamic system theory Experimental re-
sults on tw otime series from the San ta F eompetition show that the
technique is competitive with state-of-the-art forecasting methods.

1. Introduction

The paper presents a local method for long horizon forecasting based on the
iteration of a one-step-ahead predictor. Local approaches do not estimate a
global modef the  dynamic system underlying the time series but defer the
processing of data until a prediction is explicitly requested [6]. A database of
observed values is stored in memory, the dataset is embedded in a state space
and the prediction is derived from an interpolation based on a neighborhood
of the current state (locally weighted regression). A key issue in local learning
is model selection, that is theprocedure whic h aims to select the local model
structure (e.g. size of the neighborhood, degree of the local fitting) which is
expected to have the best prediction accuracy given a set of historical observa-
tions. This issue is still more relevant if we want to avoid the accumulation of
prediction errors during the iteration of a one-step-ahead predictor.

In previous works [4 , 3], the authors proposed the adoption of linear statisti-
cal procedures (e.g. the PRESS leave-one-out statistic) to assess different local
configurations and to select the most accurate one. Here, w euse a local de-
scription of the dynamic system underlying the time series in order to solve the
model selection problem. The idea is to replace an assessment criterion based
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on cross-validation with a criterion based on the local topological properties of
the system.

In particular, w econsider here the notion of conservative/dissipative dy-
namical system [7]. This notion which is global for a linear system can have a
local interpretation in a nonlinear system. When the volume of a local region
surrounding a trajectory remains constant during the evolution of the dynami-
cal system, the system can be said locally c onservative On the contrary , when
the v olume surrounding a trajectory cotracts, it can be defined as locally dis-
sip ative.

A local model of a dynamical system returns, together with a prediction,
also a description of the local behavior of the system, i.e. whether the system
is dissipative or conservative. As a consequence, it is possible to check if the
prediction returned by the local approximator is consistent with the expected
behavior. The main idea of the paper is to use, as assessment criterion of a
giv en local model, the consistency of the model prediction with the expected
change of volume of the local area surrounding the current trajectory .

The idea of using dynamic parameters (e.g. the Ly apuno exponents) to
support time series forecasting is not new in literature [5]. What is innovative
here is the adoption of a theoretical result of system theory to implement the
model selection step of a local learning algorithm.

The experimental session will show that this local iterated method is com-
petitiv e with state-of-the-art multi-step ahead prediction techniques, by keep-
ing small the accumulation error on long forecasting horizons.

2. Local iterated time series prediction

A time series is a sequence of measurements (¢) of an observable ¢ at equal

time intervals. The Takens theorem implies that for a wide class of determin-

istic systems, there exists a diffe omorphism(one-to-one differential mapping)

betw een a finite windov of the time series {¢(t), p(t—1),...,0(t—n+1)} (lag
vector) and the state of the dynamic system underlying the series. This means

that in theory it exists a multi-input single-output mapping (delay coordinate
embedding) f : R™ — R so that:

p(t+1) = flet), ot = 1),...,0(t —n+1)) (1)

where n (dimension) is the number of past values tak eninto consideration.
This formulation returns a state space description, where in the n dimensional
state space the time series evolution is a trajectory, and each point represents
a temporal pattern of length n.

A model of the mapping (1) can be used for tw o objecties: one-step pre-
diction and iterated prediction. In the first case, the n previous values of the
series are assumed to be available and the problem is equivalent to a problem
of function estimation. In the case of iterated prediction, the predicted output
is fed back as an input to the following prediction. Hence, the inputs consist of
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predicted values as opposed to actual observations of the original time series.
A prediction iterated for k times returns a k-step-ahead forecasting.

We propose a locally w eigh tedregression method to estimate a one-step-
ahead predictor for performing iterated prediction. T ypically the data analyst
who adopts a local regression approach, has to take a set of decisions related
to the model structure (e.g. the number of neighbors, the kernel function,
the parametric family, the distance metric). In local learning literature several
methods have been proposed to automatically select the adequate configura-
tion [2 ].In previous work [4, 3] we studied the PRESS statistic which is a sim-
ple, well-founded and economical result of linear statistical analysis to perform
leave-one-out cross-v alidation and to assess the performance in generalization
of local linear models.

Here, w e propose a modelselection criterion based on the local dynamics
of the system underlying the observations. This criterion is used to select the
best structure of a one-step-ahead estimator with the aim of capturing the
long term dynamics underlying the available set of observations. In particular,
the criterion will be used to select query-by-query (i.e. at each time step) the
best number of neighbors by keeping fixed the shapeof the regression kernel
(tricube) and the distance metric (euclidean).

In the following sections we will first introduce some basic results for discrete
time dynamic systems and then we will discuss how these results can be used
to formulate a model selection criterion.

2.1. Volume contraction in the state space
Consider a generic n-dimensional discrete time dynamic system described by
x(t+ 1) = F(x(¢)) (2)

where the [n x 1] vector x(t) = [z1(t),72(t),...,2,(t)]T denotes the state at
time t.
Let Q(t) represent a small rectangular region at time ¢ in the neighborhood

of x(t), whose i*t i = 1,...n, side is the vector §; = [0...6; ...0]. The volume
of Q(t) is given b yV(¢) =[]\, 6;. Let
QU +1) = {x(t+1): x(t) € Q) & x(t+ 1) = F(x(t))} 3)

be the region defined at time ¢ + 1 by the set of trajectories of (2) passing at
time ¢ through Q(t).

It is kno wn in literature [] that the volume of this n-dimensional region is
given b W(t + 1) = V(t) * det J where J denotes the Jacobian matrix of the
system (2). Therefore, for a n-dimensional discrete time system (2) the local
volume contracts b y a factor detJ at each time step.

Let us now consider the linearization x(t + 1) = Ax(t) of the system (2) at
time ¢ in the neighborhood of the state x(t), where A is a [n xn] matrix of linear
coefficients. If we assume that the nonlinear system (2) is well described by the
linearization in a neighborhood of x(t), an approximation of the contraction of
the local volume in the neighborhood of x(t) is given b y detA.
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2.2. A contraction-based criterion of consistency

Our local approach to multi-step-ahead prediction exploits the dynamic prop-
erties described in the previous section in order to check the goodness of a local
approximation in the neighborhood of the current state.

Given a local predictor, we compute tw o measures, astate spacemeasure
and an estimation measure, to evaluate the contraction rate of a local vol-
ume around the current trajectory .Hence, the consistency betw een these tv o
measures is chec kedto assess the goodness of the local predictor itself. The
assumption is that, if the local model is a reliable description of the local dy-
namics, these tw omeasures should be consistent. A large deviation betw een
these measures should be considered as a violation of the hypothesis of locality.

Cousider an input/output embedded model (1) of an observed time series
, whose available realization is described in terms of an input/output dataset
Dy. Assume that the vector ¢(t) = [¢(t),...,9(t —n + 1)]T is an accurate
reconstruction of the state x(t).

Let us denote by Ly, k = kp,...,kn, a local linear description of the
dynamics (1) which fits a linear model to the k nearest neighbors of ¢(t) in
Dy . The linearization of the dynamics f on the basis of the historical data is
given by

Pr(t+1) =do + arp(t) + azp(t —1) + -+ + anp(t —n + 1)) (4)

where ¢ (t + 1) is the one-step-ahead prediction of the local model £ and a;,
1 =0,...,nis the set of parameters estimated by a Locally Weighted Regression
procedure.

Our goal is to assess the predictive accuracy of on the basis of the awail-
able data. The idea is that for a generic local model £y w ecan deriv etw o
independent estimates of the contraction of the state space and that a good
criterion to assess the accuracy of Ly is to check the consistency betw een these
tw o measures. Let us see the tw o measures in detail:

State-space measure M*: The local model (4) can be written as

()
Tn(t+1) =xzp_1(t)

From Section 2.1. a measure of the cortraction rate of the dynamics (4) is the
determinant of the Jacobian of (5) which, in this case, equals a,,. Hence, w e
define the quantity a,, as the state-space measure M;®.

Estimation measure M®: Let us define with d(¢) the distance of the
reconstructed state ¢ (t) from the nearest neighbor in the training set Dy. Let
di,(t + 1) be the analogous distance of the predicted state

Pt +1) = [Pr(t +1),0(t),..., 0t —n+2)]" (6)
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from the nearest neighbor in Dy, where the prediction @ (t+1) is given b y (4).
The quantity

APt +1)

Mg =
’ dn (1)

(7)
is the estimation measure of the contraction of the state space
We define with

1

Ck = (M;cas _ Mzs)z

(8)
the consistency of the t w o cotraction measures for a generic local model Ly,
fitted on the k nearest neighbors.

Our approach consists in considering the measure (8) as an assessment
measure of the local model £;. The idea is that the more reliable is the local
model, the larger is the consistency betw een the state space measure and the
estimation measure. As a consequence, the measure C}, can be used to select
among a class Ly, k = ky,, ..., kp, of local linear models, the one which is
expected to return the best prediction.

Our local learning procedure can be summarized as follows:

1. The one-step-ahead predictor is a local model of the embedding.

2. The k-step-ahead prediction is performed by iterating a one-step-ahead
estimator.

3. The local model is selected in a space of alternative model configurations
Ly, each characterized by a different number of neighbors and assessed
by a value C}, of the consistency criterion.

4. The local model with the highest consistency is selected.

3. Experiments and final considerations

The local learning iterated approach has been applied both to the prediction
of a real-world data set (A) and to a computer generated time series (D) from
the Santa Fe Time Series Prediction and Analysis Competition. In particular,
this section evaluates our query-by-query selection of the number of neighbors
based on the consistency criterion (8). The number of neighbors is limited to
range from 4 to 12. We adopt for the series A an embedding model having
the same dimension m = 16 proposed in [8] and for the series D an embedding
model with m = 20 as reported in [10].

T ablel (left) compares the NMSE (Normalized Mean Squared Error) on
the A test set of the local predictor based on the consistency criterion (CC)
with the local method based on cross-v alidation (Press) proposed in [4] and
with the performance statistics reported by Sauer [8] and Wan [9]. T ablel
(righ t) compares the RMSE (Root Mean Squared Error) on the seriesD of the
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[ Test A ]| CC [ Press | Sauer | Wan | [ Test D | CC [ Press | Zhang |
1-100 0.028 | 0.029 | 0.077 | 0.055 0-24 0.0459 | 0.0553 | 0.0665
1180-1280 0.051 | 0.028 | 0.174 | 0.065 100-124 0.0524 | 0.0244 | 0.0616
2870-2970 0.255 | 0.003 0.183 0.487 200-224 0.2572 | 0.1073 | 0.1475
3000-3100 0.039 | 0.030 0.006 0.023 300-324 0.0347 | 0.0240 | 0.0541

T able 1: On the left: NMSE of the predictions for time series A. On the right:
RMSE of the predictions for time series D.

local predictor based on the consistency criterion (CC) with the local method
based on cross-validation (Press) proposed in [4] and with the results of [10].

The experiments sho wthat for long horizons prediction the idea of using
dynamic measures, like the consistency criterion, can be competitive with state-
of-the-art prediction architectures and with methods based on con ven tional
assessment techniques, like cross-v alidation.
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