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Abstract.

Deterministic nonlinear prediction is a pow erful tec hnique for the anal-

ysis and prediction of time series generated by nonlinear dynamical sys-

tems. In this paper the use of a Kohonen netw ork asa component of

one deterministic nonlinear prediction algorithm is suggested. In order

to evaluate the performance of the proposed algorithm, it was applied to

the prediction of time series generated by two well known c haotic dynam-

ical systems and the results were compared with those obtained using the

Modi�ed Method of Analogues with the same time series. The generated

time series were corrupted by superimposed observational noise. The ex-

perimental results ha ve sho wn that the Kohonen netw ork can learn the

neigh borhood relations present in the reconstructed attractor of the time

series and that good predictions can also be obtained with the proposed

algorithm.

1. Introduction

In the last decades many di�erent techniques have been developed for the

analysis and prediction of time series, ranging from the w ell-known Box and

Jenkins models [1] to the latest neural netw ork based ones [3, 4].The most used

approach consists in considering the time series as a realization of a stochastic

process and in applying the di�erent methods devised in the framework of
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Statistics to obtain a model for the process [1, 3]. Today, with the latest

results concerning deterministic chaos, even if the data look random apparently

it is important to consider the possibility that the time series was generated

by a low order nonlinear deterministic dynamical system [4, 5]. One of the

techniques dev eloped for the analysis of chaotic time series is deterministic

nonlinear prediction[5].

In this paper the use of a Kohonen neural netw ork as a component of one

deterministic nonlinear prediction algorithm is suggested. The algorithm was

originally proposed by Lorenz [7] and later modi�ed by Ikeguchi and Aihara

[5] and is known as the Modi�ed Method of Analogues (MMA). The paper is

organized as follows: In section 2 the MMA is explained and in the next section

the proposed prediction algorithm is introduced. In section 4 some experiments

are conducted to evaluate the performance of the algorithm and the results are

discussed. Finally, the main conclusions are highlighted.

2. The Modi�ed Method of Analogues

This method was introduced by Lorenz in 1969 [7] and was named \The Method

of Analogues" because the prediction of a point in the attractor is obtained

analogizing the movement of its nearest neighbor. In 1995, Ikeguchi and Aihara

[5] proposed touseM nearest neighbors instead of only one neighbor to �nd

the prediction of the point. They named this algorithm \The Modi�ed Method

of Analogues".

Let v
T
be the point of the state space whose future behavior will be pre-

dicted. First, the M nearest neighbors of v
T
are searc hed from all the points in

the attractor and designated by v
ki
(i = 1; 2; :::;M), with v

ki
being the nearest

to the point v
T
and continuing in ascending order. After p time steps v

ki
is

mapped to v
ki+p.

The prediction v̂
T+p of vT is given as follows:

v̂
T+p =

P
M

i=1

vki+p

jvki
�vT j

P
M

i=1

1

jvki
�vT j

: (1)

Our aim with this work is to use a Kohonen netw ork that properly trained

with the di�erent points of the attractor could be used to obtain the neighbors

v
ki+p of the point vT . This imply that the complete prediction process could be

done extremely fast (once the netw ork has learned the neighborhood relations

of the attractor), because of the high degree of parallelism associated with the

Kohonen neural netw ork.

3. The proposed prediction algorithm.

As it was mentioned in the previous section, we expect the Kohonen algorithm

could be used to learn the metric relationships between the points in the recon-

structed attractor and later thatit could be included as a part of the MMA,
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without signi�cant loss on the accuracy of predictions. Therefore, the training

algorithm and the prediction phase will be described in the next subsections.

3.1. The training process.

The well-known Kohonen algorithm was introduced by Teuv o Kohonen in 1982

as a model of the self-organization of neural connections [6]. We will giv e a

brief o verview of this arti�cial neural netw ork and its main features, including

an added statement. The interested reader could �nd more comprehensive

descriptions in [2, 6].

The net w orkhas n units distributed in a one or tw o-dimensionalarray.

There exists a neighborhood function � de�ned on IxI (I being the set of units)

that depends only on the distance between two units of I (�(i; j) decreases with

increasing distance between i and j).

The input space 
 is a subset of <d endow ed with a distance (in this paper

the Euclidean distance is used).

The unit i, represented by the weight vector:

X
i
= (X

i1
; X

i2
; : : : ; X

id
): (2)

is fully connected to the d inputs. A vector NDX
i
, that contains the references

to the points in the attractor which are nearest to neuron i, was also included.

Then, the state of the netw ork at timet is completely de�ned by:

X(t) = (X1(t); X2(t); : : : ; Xn
(t); NDX1(t); NDX2(t); : : : ; NDX

n
(t)) (3)

F or a given state X , the netw ork response to inputv is the best matching

unit (BMU) i0, which is the neuron whose weight vector X
i0
is the closest to

input v.

This netw ork implements what is called a \topology preserving map" in the

sense that, as far as possible, neighbors in the input space are mapped onto

neighboring neurons [2, 6]. This property of the netw ork is the most important

in our attempt to use it as an ordered representation of the attractor generated

by the time series we wan t to predict.

In most real applications only one variable can be measured from the chaotic

dynamical system, a scalar time series that can be designated by y(t)(t =

1; 2; : : : ; N). The attractor can be reconstructed from the time series using the

method of time delayed vectors proposed by Takens [8] in the following form:

v(t) = (y(t); y(t� �); : : : ; y(t� (d
e
� 1)�)) (4)

where d
e
is the embedding dimension of the reconstructed attractor and � is

the time delay.

Now, the only statement that needs to be added to the training algorithm

of the Kohonen netw ork is the following:

) Update the vectors NDX
i
(t+1);8i 2 I with the indexes of the M nearest

points (in the attractor) to X
i
(t+ 1).

 D-Facto public., ISBN 2-930307-00-5, pp. 347-352B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)



The Kohonen netw orkcan be trained by taking the points in the recon-

structed attractor as the inputs (we used the points from the �rst half of the

time series values). Once the learning process has ended,the net work can be

incorporated as a part of the prediction algorithm.

3.2. The prediction phase

The idea is to substitute the search for the nearest neighbors of the point v
T
by

the BMU i0 (taking v
T
as the input to the netw ork) and its closest neighbors

(as indicated by the references in the vector NDX
i0
). Then, these points are

taken as the v
ki
. After that, the prediction is found as in the MMA.

The prediction algorithm can be explicitly written as:

Let v
T
be the point on the attractor whose future ev olution will be pre-

dicted.

1. Present the input v
T
to the netw ork (previously trained with the points of

the reconstructed attractor) and choose the BMU i0.

2. Find the v
ki
in the original attractor using the indexes in the vector NDX

i0

of the winning unit i0:

v
ki
= v(NDX

i0
(j)); j = 1; : : : ;M (5)

3. T ransform thev
ki
to v

ki+p
(p is the prediction step) and obtain the prediction

v̂
T+p using equation (1) as in the MMA.

4. Application of the prediction algorithm to

computer generated time series

In order to evaluate the performance of the proposed algorithm, it was applied

to the prediction of time series generated by the H �enon andthe Ikeda Maps

(tw ow ellkno wnchaotic dynamical systems) and the results w erecompared

with those obtained using the MMA with the same time series. The generated

time series were corrupted by superimposed observational noise [5].

F or the systems previously mentioned, time series of di�erent lengthsN(128,

256, 512, 1024, 2048) were generated, having the �rst 10000 points discarded,

because considered as transient. After that, the attractors were reconstructed

using the method of dela ys[8] with delay time � = 1, prediction step p = 1

and embedding dimension (reconstruction dimension) d
e
= 3 in all cases.

Next, di�erent Kohonen netw orks were trained with the points of the at-

tractors and the prediction algorithm was applied to predict the rest of the

points of eac h time series not used during training.It is important to mention

that the trained networks had a number of neurons that varied depending on

the size of the attractor, ranging from netw orks with 7x7 neurons to netw orks

with 33x33 neurons.
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The proposed prediction algorithm was implemented using the SOM Tool-

box dev elopedby the Neural Net w orks Research Centre of the Helsinki Uni-

versity of Technology and the experiments w ere carried out using a SUN Sparc

Ultra10 with MatLab 5.2.1. To quantify the performance of the algorithm, the

Relative Root Mean Square Error (RRMSE) betw eenthe real and predicted

time series, was computed [5].

The results of the application of the proposed prediction method are shown

in �gure 1. In all cases the plotted values are the averaged values betw een

the �v etime series generated from eac h system. As it can be seen from the

�gure, the values of the RRMSE clearly demonstrate the ability of the proposed

algorithm to make successful predictions of chaotic time series.

As it can be expected (considering that the proposed method is only a mod-

i�cation of the MMA) the RRMSE has a similar behavior for both prediction

algorithms, but with a slightly better performance of the proposed method. It

is important to notice that our aim with this work was to propose a modi�ca-

tion of the MMA that could take advantage of the high degree of parallelism

and the possibility of a VLSI implementation of the Kohonen self-organizing

map, to improve the prediction speed of the MMA without signi�cant loss in

the accuracy of predictions. The experimental results have shown that this

objective was accomplished.

5. Conclusions

In this paper the use of a Kohonen netw ork as part of a deterministic nonlinear

prediction method has been proposed and the short term predictions of di�erent

computer generated time series were analyzed.

The experimental results have shown that the Kohonen netw ork can e�ec-

tively learn the neighborhood relations present in the reconstructed attractor

of the time series, and that the proposed algorithm can achiev e good prediction

performance. The MMA can thus be implemented using aKohonen net w ork

as one of its components. The bene�ts of the high parallelism of this neural

netw ork, can thus be obtained, without loss on the accuracy of predictions.

As a future w orkw eare in terested in the use of the proposed algorithm

to develop a test to distinguish betw een c haos and noise.The performance of

the algorithm with dynamic selection of the number of neighbors can also be

studied.
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