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Abstract. Local models have emerged as one of the leading methods

of chaotic time series prediction. Ho wever, the accuracy of local models

is sensitiv e to the c hoice of user-speci�ed parameters, not unlike neural

netw orks and other methods.This paper describes a method of optimiz-

ing these parameters so as to minimize the leave-one-out cross-validation

error. This approach reduces the burden on the user to pick appropriate

values and improves the prediction accuracy.

1. Introduction

Unlike global models, local models postpone the computation required for con-

struction until the input vector is available. The nearest neighbors in the data

set are then located, a simple model is constructed using only the neighboring

points, and the model is evaluated using the input vector to produce the local

model output.

One of the most vexing problems facing users who wish to use a local model

is how to choose appropriate values for the model parameters. Since the best

parameter values depend on the properties of the data set, there is little to

guide users in making this decision.

This paper introduces a method for optimizing the traditionally user-speci�ed

parameter values to maximize the model performance. The advantages of this

method are that it relieves the user of the burden of specifying critical param-

eter v alues, it gives the user control of the computation used for optimization,

and it improves the model accuracy as compared to the initial values provided

by the user.

1.1. Local v ersusGlobal Modeling

Local models have performed very well in comparative studieson time series

prediction problems and in most cases have generated more accurate predictions

than global methods [5, 4, 3]. How ev er,each of these studies is subject to

the problem of expert bias in which the researcher may unintentionally bias a
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comparative study because they are more skilled at applying the methods that

they favor. This problem is largely circumvented by competitionsthat bring

together a large group of researchers to compare their preferred prediction

methods on a common set of problems.

Two of these competitions are of special signi�cance. A time series pre-

diction competition was held by the Santa Fe institute in 1991 [9]. Although

several t ypes of time series analysis were included in the competition, the pre-

diction of a chaotic time series produced by a laser received the most attention

and entries. The winner of the competition used a novel neural network archi-

tecture. The second place entry, generated by a local linear model, was nearly

as good. A further comparison of these two methods was performed after the

competition. On other segments of the time series the local model performed

better than the neural netw ork in three out of four trials.

A second competition w asheld in Leuven, Belgium in 1998 to assess the

changes and improvements that had occurred in the �eld of time series predic-

tion since the Santa F e competition[8, 7]. Entrants were giv en a timeseries

consisting of 2; 000 points and were ask ed to predict the following 200 points.

Both the winning entry and the second place entry were generated by a local

model and only local models were able to forecast the �rst 80 steps accurately.

The scope of these competitions was too narrow to conclusively determine

that any speci�c type of nonlinear modeling is best because they both used

only a single prediction sequence from a single time series. How ev er, the strong

showing of local models in both competitions strongly supports the claim that

local models are among the best techniques for time series prediction.

2. Cross Validation Error (CVE)

Almost all nonlinear models optimize model parameters to minimize some mea-

sure of performance. In most cases the measure of performance is an average

error, such as mean squared error, taken over the entire data set. This ap-

proach often causes the model to be accurate at the points in the data set but

to vary substantially at other points, a problem known as over�tting.

T osolv e this problem, users often divide the data set into tw oparts: a

training data set and a test data set. The nonlinear model is then iteratively

optimized to minimize the average error on the training data set and the opti-

mization is stopped once the average error on the test set increases. A disad-

vantage of this approach is that only half of the data is used to directly build

the model.

Local models can use a much more accurate technique of estimating the

model performance. This technique consists of taking a single point out of the

data set, building a nonlinear model using the remaining points in the data

set, and using the nonlinear model to estimate the prediction performance for

the removed point. The process is repeated for many points in the data set

and the average error is calculated. This error is called the leave-one-out cross-

validation error (CVE).
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The computational cost of calculating the average CVE is prohibitive for

most global models because it requires the model to be constructed many times.

Calculating the average CVE multiple times, as would be necessary to use the

CVE in an iterative optimization of model parameters, is even more daunting.

Local models can calculate the CVE almost as eÆciently as they can cal-

culate the local model outputs1. T oestimate the error for an input vector

tak en from the data set, thek+2 nearest neighbors are found and the nearest

neighbor, which is identical to the input vector, is discarded. The model error

is then evaluated using the vector's k + 1 neighbors.

The abilit y to calculate the cross-v alidation erroreÆciently is a very im-

portant advantage of local models and it plays a vital role in the optimization

algorithm described in the next section.

3. Cyclic Coordinate Optimization

Gradient-based optimization algorithms can greatly improve the initial param-

eter values pro videdby the user. How ever, this approach cannot be used to

optimize integer-v aluedparameters, suc h as the number of neighbors, or pa-

rameters for which the gradient cannot be calculated. T o optimize thesepa-

rameters, an algorithm that does not require the gradient must be used. One of

the simplest of these algorithms is the cyclic coordinate method. This method

optimizes each parameter one at a time, and then repeats until con vergence [1,

pp. 283{5]. For example, if the parameters to be optimized are stored in a

vector 
 2 Rn , the cyclic coordinate method is as follows.
Cyclic Coordinate Method

1. For i = 1 to n,

1.1 
i := argmin
�

CVE([
1; : : : ; 
i�1; �; 
i+1; : : : ; 
n]
T).

1.2 Next i.

2. If not con verged, then goto 1.

Since each step in the loop can only decrease the cross-v alidationerror,

this method can only improve the model performance; and under very general

conditions the algorithm is guaranteed to converge [1, p. 285].

Since the algorithm optimizes each parameter individually, this method is

not computationally eÆcient for models that have a large number of parame-

ters. How ever, it is an eÆcient approach for models that ha ve relativ ely few

parameters (less than a dozen), such as local models. Several new parameteri-

zations of local models are described in [6].

3.1. Semi-global Line Search

Each step in the inner loop of the cyclic coordinate method tries to �nd the

value of a single parameter that minimizes the cross-validation error. Since only

1An eÆcient method of calculating the CVE using iterative prediction is described in [2].
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one parameter is optimized at each step, this is essentially a one-dimensional

minimization problem, also known as the line search problem.

If the parameter to be optimized is an integer, a user-speci�ed range of

values can be searched for the best value. F or example, the number of neigh-

bors, k, could be optimized by calculating the cross-validation error (CVE) for

a range of values, fkmin; kmin + 1; : : : ; kmaxg, and retaining the value with the

smallest CVE.

If the parameter is a real number, any of a number of line search algorithms

could be used to �nd a local minimum [1]. How ev er, a semi-global line search

algorithm is preferable if the CVE contains many shallow local minima,as is

the case with most of the local model parameters.

The semi-global line searc h algorithm used in the results reported here

tries increasing and decreasing the parameter value by a range of ampli�cation

factors, a set of scalar multipliers. For example, if 
i is the parameter being

minimized and � is a set of possible ampli�cation factors, the minimization in

step 1.1 w ouldconsist of evaluating the CVE with � = �
i for eac h � 2 �.

The parameter 
i w ould then bereplaced with the value that minimized the

CVE.

T oensure that a wide range of parameter values is examined, the ampli-

�cation factors can be ev enly spaced on a logarithmic scale. F or example, if

the user wished to evaluate the CVE at only eleven points and wanted to try

ampli�cation factors ranging from 1

10
to 10, the ampli�cation factors would be

f0.100, 0.158, 0.251, 0.398, 0.631, 1.00, 1.58, 2.51, 3.98, 6.31, 10.0g.

After the cyclic coordinate method converges, the parameter values can be

found with greater precision by reducing the range of the ampli�cation factors.

F or example, after initial convergence, the range could be reduced to�min = 0:2

and �max = 5.

Cyclic coordinate optimization is better for local models than gradient-

based optimization because it can avoid shallo wlocal minima and does not

require computation of the gradient. However, the cyclic coordinate method's

rate of convergence is muc h slo wer than gradient-based optimization methods.

If the gradient can be calculated for only some of the model parameters, the

rate of convergence can be increased by combining the cyclic coordinate method

with a gradient-based algorithm. This type of hybrid approach, called the

generalized cyclic coordinate method, con verges substantially faster than the

cyclic method and is described in detail in [6].

4. Over�tting

An accurate method of estimating the model accuracy is an essential compo-

nen tof model optimization algorithms suc h as the cyclic coordinate method

described in the previous section. Although the leave-one-out cross-validation

error (CVE) is intuitiv elymore accurate than a partitioning of the data into

a training set and test set, it is not obvious how much over�tting occurs and

ho w biased the CVE estimate of model performance is.
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(a) Lorenz
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(b) San ta Fe

Figure 1: Prediction horizons for (a) the Lorenz time series and (b) the Santa

F e competition time series. The horizons sho wthe square root of the mean

squared error divided by the sample variance of the time series (normalized)

versus the number of steps predicted ahead. The tw o lines show the mean CVE

and the test error. The gray region shows the estimated standard deviation of

the mean CVE.

To investigate this question a local linear model2 w as optimized using tw o

chaotic time series benchmarks, the Lorenz time series and the Santa Fe com-

petition time series3. In both cases the CVE was estimated using 1,000 equally

spaced points tak en from the �rst 3,000 points in the time series and the av-

erage test error was calculated from 4,000 evenly spaced points taken after the

segment used to build the model.

Figure 1 shows the prediction horizons. In eac h plot the gray region shows

three standard deviations of the average CVE. Since the test error is w ell

within this region, these plots4 giv e empirical support that the CVE is not

signi�cantly biased by the model optimization and over�tting does not occur.

5. Conclusion

This paper introduced a new method of local model optimization based on a

generalization of the cyclic coordinate method. This method is especially well

suited to local models because the number of parameters is typically small (less

than a dozen) and it does not require the error gradient. This method has the

additional bene�t of converging to better local minima than gradient-based

optimization algorithms because each line search is performed semi-globally.

Although optimization of model parameters is not new, there has been

little w orkto apply these methods to local models. This approach replaces

the burden on non-expert users of choosing sensitive model parameters with

2The details of the local model parameterization and optimization are given in [6], which
is available online at http://www.ee.pdx.edu/�mcnames.

3Both of these are available online at http://www.ee.pdx.edu/�mcnames/DataSets.
4These results are t ypical of those observed for many chaotic time series and local models.
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the responsibility of choosing a range of parameter values. This is preferable

because the user will typically have a muc h better idea of the range, such as

the number of neighbors, than the best value. This also lets the user make the

tradeo� of model accuracy for the amount of computation used to optimize the

model.

An accurate estimate of the model performance is an essential component

of model optimization. Local models have a distinct advantage over global

models in this respect because they can eÆciently calculate the leave-one-out

cross-v alidationerror (CVE). Empirical evidence w asgiv en to demonstrate

that this measure of model accuracy is not signi�cantly biased by the model

optimization and is not susceptible to over�tting.
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