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Abstract. Suitable neural netw orks may act as experts for time series

predictions. The naive prediction is in a Bayesian manner used as prior

to steer the weigh ted combination of these experts.

1. Introduction

Predicting the near future using information from the past is a challenging task.

In this paper w etry to do so by combining neural netw orksand techniques

from Bayesian statistics (cf. [1] and [6]) in order to generate a prediction for

an observable yt+1, giv en the time seriesy1; y2; : : : ; yt.
We start from the following observations. First it is hard to beat naiv e

predictions|yt in the setting abo ve.Secondly, it is a complicated matter to

combine expert forecasts into better ones. We feel that a joined e�ort might

generate better results, especially if neural netw orks support the process. For

this purpose we use so-called FIR netw orks (see [4]), where the usage of previous

activ ations during the training stage makes them suited for time series analysis.

In this paper we use a Bayesian model for time series analysis. The prior is

based upon the naive prediction. We then develop neural netw ork tec hniques

to pro vide the necessary expert results. These ingredients are combined into a

joined forecast. Here we extend methods like those in [2].

Experiments show the potential of this approach. We conclude with sugges-

tions for further research. Among other things we discuss di�erent possibilities

for the expert forecasts, all of them based upon neural netw ork tec hniques.

2. Construction of a Bayesian Model

In this paper w e consider a process fyt : t = 1; 2; : : :g where yt is a one-

dimensional con tinuous random variable at time t. Suppose w eare at time t
and we are given the task of predicting yt+1 given the sequence y1; y2; : : : ; yt.
We consider the following prior probability distribution of yt+1:

(yt+1j yt) � N(yt; �
2): (1)
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This means that we assume that yt+1 has a Gaussian distribution with mean

yt and variance �2. Suppose that at the same time we haveN expert forecasts

for yt+1 available, contained in the column vector (T denoting transpose)

~ot = (o1t ; : : : ; o
N
t )

T : (2)

We assume that each forecast oit (i = 1; 2; : : : ; N) is an unbiased estimator of

yt+1. This means that we can describe the relationship betw een~ot and yt+1 by

~ot = yt+1 � ~e+ ~v; (3)

where ~e= (1; 1; : : : ; 1)T is the v ector of dimensionN consisting of ones and ~v=
(v1; v2; : : : ; vN )T is the v ector of random errors assumed to have a multivariate

Gaussian distribution with mean zero (the N -dimensional zero vector) and a

N � N variance-covariance matrix �. This means that the distribution of ~ot
given yt+1 (referred to as the likelihood of ~ot) can be described by

(~otj yt+1) � N(yt+1 � ~e;�): (4)

Starting from these observations we can now use Bayes' rule to derive the

probability distribution of yt+1 given ~ot and yt, which is called the posterior

distribution of yt+1:

p(yt+1j~ot; yt) =
p(yt+1j yt) � p(~otj yt+1; yt)

p(~otj yt)
; (5)

where p(�) denotes the probability density function. In [1] it is shown that

(yt+1j~ot; yt) � N(�t; �
2); (6)

where

�t =Wyt + (1�W )mt; �2 =W�2; (7)

W = 1 = f�2 � ~eT��1~e+ 1g; (8)

mt =

NX
i=1

wi � oit; (w1; w2; : : : ; wN ) = ~eT��1= ~e T��1~e; (9)

The mean �t in (7) is called the Bayesian estimator. It is easy to see that it

is un biased (i.e., the expectation of�t equals yt+1). Another well-known result

is that it is optimal in the sense that it is an estimator with minimal variance.

We will use the Bayesian estimator as our forecast for the unknown yt+1.
Note that the combination is carried out at tw olevels. First a weigh ted

average of the expert forecasts based on the variance-covariance matrix is com-

puted in (9). This results in the estimator mt which is then combined with

yt (the naiv eprediction) in (7) using both the variance-covariance matrix �

and the variance �2 of the prior distribution in order to get the mean of the

posterior distribution.

A problem ho w ev er liesin the fact that in most situations � and �2 are

unknown. One w ayto overcome this problem is to estimate these quantities
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using the known observations y1; y2; : : : ; yt. We can for example estimate �2 by
maximizing the likelihood L:

L(�2) =

tY
k=2

p(ykjyk�1); (10)

which gives us the following estimator:

c�2 = 1

t� 1

tX
k=2

(yk � yk�1)
2: (11)

The variance-covariance estimator can also be estimated from y1; y2; : : : ; yt
which yields the N �N matrix �̂ with

(�̂)ij =
1

t� 2

tX
k=2

(vik � vi
avg

)(vj
k
� vj

avg
) (i; j = 1; 2; : : : ; N); (12)

where vik = oik � yt+1 and vi
avg

= 1

t�1

Pt

k=2
vik denote the error of forecast i at

time k and its average error, respectively.

In [2] sev eral techniques that combine neural net w orkforecasts are dis-

cussed. We mention bumping, i.e., take the netw ork with the best performance,

and bagging, i.e., take the unw eigh ted mean of the netw orks.

3. Neural Networks as Expert Forecasts

In the previous section w ediscussed a Bayesian framework in which several

expert forecasts w ereused to deriv ethe posterior probability distribution of

yt+1. In our model we let feed-forward netw orks provide such forecasts. Their

abilit y to discover non-linear relationships betw een an input space and a cor-

responding target space by means of examples makes them suitable models to

generate predictions in time series. The main idea is to let each netw ork gener-

ate a prediction of yt+1 when it is presented with an input pattern containing

the sequence (yt�M ; yt�M+1; : : : ; yt) for certain M � 0. Suc hinput patterns

are also referred to as time windows.

We choose standard feed-forward netw orks containing a single hidden layer,

where the units have sigmoid activation functions. This layer is fully connected

to the single neuron in the output layer which has the identity as its activation

function. The output of this neuron will be the actual prediction of the netw ork.

As mentioned before we let the input consist of a time window containing the

current observation and the M previous observations. This means that the

output of the netw ork is a function from the observation at the current time and

from past observations. This construction may be viewed as a special instance

of a FIR netw ork (see [4]).

In the literature several strategies have been proposed for training and test-

ing a feed-forward netw ork for time series prediction. For our experiments we
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adopt the following scheme. Suppose we are at time t and we want to generate

a prediction of the unknown yt+1. We then compose a training set consisting

of the S preceding time windows with corresponding targets. We train the net-

w ork during a number of cycles on this training set by means of teacher-forcing

adaptation, i.e., we do not feed the actual output of the netw ork back as in-

put, but take the real targets instead. We use the standard back-propagation

algorithm to minimize the sum of squares error of the netw ork on the training

set:

Et =
1

2

SX
s=1

(ot�s+1 � yt�s+1)
2; (13)

where ot�s+1 denotes the output of the netw ork when presented with the time

window (yt�s�M ; yt�s�M+1; : : : ; yt�s).

4. Experiments and Results

In this section we present and discuss the results of experiments performed for

tw o datasets. Three methods of constructing an ensemble (bumping, bagging

and the Bayesian model described in Section 2.) and the naive prediction were

implemented. F or both datasets we constructed N = 30 feed-forward netw orks

each having one hidden layer consisting of 5 units. At each point of time they

w ere trained for 50 cycles on theS = 20 preceding time windows with M =

10. After training w e let each technique make a prediction of the following

element in the time series of which the error was computed. For each dataset

the experiment w as repeated 20 times and afterwards the average and the

standard deviation of the root-mean-square error were computed.

The following two datasets were used:

The Mack ey-Glass dataset: This is a dataset consisting of the �rst 1000

points of the series generated by the Mackey-Glass delay-di�erential equation

with delay parameter 30, as described in [3].

Sunspots dataset: This dataset contains 280 yearly sunspot numbers, as

described in [5].

Mackey-Glass Sunspots

average standard deviation average standard deviation

bumping 0.047 0.00056 0.397 0.03192

bagging 0.052 0.00059 0.335 0.00638

naiv e 0.380 - 0.382 -

Bayes 0.038 0.00077 0.323 0.00623

T able1: The average and standard deviation of the root-mean-square errors

over 20 runs for the tw o datasets.
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Figure 1: Graphs sho wingthe performance of the Bayesian estimator on the

Mackey-Glass series and the Sunspots series.
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In T able 1 the average root-mean-square errors yielded by the di�erent

techniques over 20 runs are presented. F or bumping, bagging and the Bayesian

model the standard deviation is also included. Note that the naive prediction

has the same performance over the runs so its standard deviation was omitted.

For both datasets w esee that the Bayesian model provides us with the

low est error. The improvement is signi�cant when compared to the other tech-

niques. T oillustrate the performance of the Bayesian model, the time series

and the function computed by Bayes' estimator for the last 100 observations

of both datasets are shown in Figure 1.

5. Conclusions and Further Research

We may conclude that the approach provides promising results. The Bayesian

combination of naiv eprediction and neural net w orkexperts is fruitful, and

adheres to the intuition concerning expert forecasting.

F or further research we are in terestedin the following. Contrary to other

approaches the expert involved are neural netw orks. During the training stage

it might be helpful to anticipate the later use of the outputs, and to ensure

di�erent behaviour for the networks. For instance, they might be trained into

di�erent directions in order to generate independent predictions. Variations on

the methods from [2] need further study. We are also examining other under-

lying probability distributions, such as the generalized Laplace distribution.
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