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Abstract. This paper introduces a no vel quaternion{valued MLP{

type net w ork called the Quaternionic Spinor MLP (QSMLP). In contrast

to another recently proposed Quaternionic MLP it uses spinors in its

propagation function. This allows very eÆciently the processing of 3D

vector data, whic his demonstrated by experiments. The QSMLP is

pro ven to be a universal approximator and a learning algorithm for it is

deriv ed.

1. Introduction

There are a couple of neural architectures proposed in the literature to process
multidimensional data. In particular a lot of research was done in the complex
domain [1]. How ever, any further extension requires non{basic algebraic struc-
tures as e.g. Cli�ord Algebras [2]. A domain of special interest was also always
that of 3D vector space, as it arises naturally in important applications as
robotics and control theory. Y et, direct architectures as proposed in [6] fail for
algebraical reasons [1], [2]. More eÆcient and robust is the use of quaternions,
which have becomev ery common in theseapplications [3]. Recently, in [1] a
Quaternionic MLP (QMLP) w asdev eloped. How ever, this QMLP performs
not in a natural way on 3D vector data. In this paper we propose instead the
Quaternionic Spinor MLP (QSMLP), which has such properties in addition.
The paper starts with an introduction to quaternions. The third section is
describing the QSMLP in terms of architecture, approximation properties and
learning algorithm. In section 4 experimental results are reported that support
our claims on the performance of QSMLP vs. QMLP.

2. Quaternions

Quaternions are generalized complex numbers of the form

q = q0 + q1 i + q2 j + q3 k (1)

with q0; q1; q2; q3 2 IR and imaginary units f i; j; kg. The imaginary units of a
quaternion behave similar to the imaginary unit of complex numbers

i2 = j2 = k2 = �1 : (2)
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They can be seen as spatial orthogonal vectors, since the following relations
hold

j k = � k j = i k i = � i k = j i j = � j i = k : (3)

Thereof, a quaternion consists of a scalar part q0 and a vector part denoted by
~q := q1 i + q2 j + q3 k. The 4{tuple notation of a quaternion is given by

q = (q0; q1; q2; q3) = (q0; ~q) : (4)

F urthermore, let [q]i (i 2 f0; : : : ; 3g) denote the i-th projection. T ogether with
the postulation that (1;~0) should be its identity, multiplication of quaternions

 is already fully determined by (2) and (3)

q 
 p = (q0 p0 � ~q � ~p; q0 ~p+ p0 ~q + ~q � ~p) : (5)

Through this, quaternions become a real associative (but not commutativ e)
division algebra IH := (IR4;+;
). As in the case of complex numbers, the
norm of a quaternion is de�ned via conjugation. The conjugate of a quaternion
is q� := (q0;�~q). The norm of a quaternion is then given b yjqj := p

q�q.

3. The Quaternionic Spinor MLP

After these preliminaries we follow the way outlined in the introduction.

3.1. QSMLP Architecture

Let us start with reviewing brie
y the architecture of the MLP and the QMLP
to be able to show how the QSMLP di�ers from them. Of course all named
neural netw orks have in common, that they consist of layers of neurons with
weighted feed{forward only connections betw een all the neurons of consecutive
layers. More precisely, the output of the j-th (non input) neuron in layer l of
an MLP is given b y

f(
X
i

w
(l)
ij � x(l�1)

i + �
(l)
j ) ; (6)

where w
(l)
ij is the weigh t connecting thei{th node in layer (l� 1) with the j{th

node in layer l, �j is the appropriate bias and x
(l�1)
i is the i-th input. All

these entities are real numbers. The choice of the activation function f will be
discussed later on. The QMLP introduced in [1] uses quaternionic entities and
replaces the scalar product by the quaternionic product

f (
X
i

wij
(l) 
 xi

(l�1) + �j
(l)) : (7)

How ever, this de�nition makes the main bene�ts of quaternions, namely the
operating on 3D vectors and its applications, not easy to use. The multiplica-
tion of a 3D vector ~v := (0; ~v) by a single quaternionic weight results not in a
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vector again. To overcome this drawback we suggest the QSMLP with neurons
of the form

f(
X
i

rij
(l) 
 xi

(l�1) 
 r
�

ij
(l) + �j

(l)) : (8)

For all r; jrj = 1 the mapping ~v 7! r 
 ~v
 r
� is a Euclidean 3D rotation

[5]. Thus, in the case of processing 3D vector data the QSMLP performs
a dilatation{rotation as w eigh tassociation. This is also true for the vector
part of arbitrary quaternionic data. Hence, also then the QSMLP has the
adv antage that its parameters are easier to interpret than those of the QMLP.
All quaternions with unit norm form the so called Spin-group, which is a double
cover of SO(3). The elements of the Spin{group are named spinors, which is
where the name QSMLP comes from. We still ha vedo de�ne the activ ation
function that should be used. The activation functions of MLPs are often
sigmoidal ones, among the most popular is � : x 7! 1=(1+ exp(�x)). Based on
it the function

�(x) = �([x]i) (i 2 f0; : : : ; 3g) (9)

w as proposed for the QMLP [1], which we will adopt.

3.2. QSMLPs are Universal Approximators

In order to show the validit yof the section headline w eha veto pro vethe
follo wing theorem.

Theorem 1 Let X be a compact subset of IHn . Then there exists a natural

number N such that the space

8<
:

NX
j=1

�j �((

nX
i=1

ri 
 xi 
 ri
�) + �j)

9=
; (10)

is dense in the space of all continuous functions from X to IH.

Proof In [4] the fundamental density theorem for MLPs with sigmoidal acti-
vation functions was proven. A set of quaternionic{valued functions has the
universal approximation property, i� it is a universal approximator for any of
the (real{v alued)component functions. The densit ytheorem for the QMLP
could be proven in [1] by this argument, since it allows reduction to the real{
valued case in [4]. Thus, w eonly have to sho wthat at least an yprojection
[w
x]i can be written as the �nite sum of spinor multiplications ri
xi
ri�.
But, there always exists u 2 IH such that for all i 2 f0; : : : ; 3g

[w 
 x]i = [w 
 x
w
� + u
 x
 u

�]i : (11)

Due to the limited available space we have to omit detailed calculations. 2
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3.3. QSMLP Learning Algorithm

For the sake of simplicity let us consider a QSMLP with only one hidden layer.
Using similar notations as in section 3 we de�ne at �rst

- hidden node activation and output value

Sm
(1) :=

X
n

rnm
(1) 
 xn 
 rnm

�(1) + �m
(1)

hm := �(Sm
(1)) (12)

- output node activation and output value

Sp
(2) :=

X
m

rmp
(2) 
 hm 
 rmp

�(2) + �p
(2)

op := �(Sp
(2)) : (13)

We want to minimize by gradient descent the error function

E =
1

2

X
p

(yp � op)
2 ; (14)

whereby yp stands for the p-th expected output value. First, we have to com-
pute the weigh ts of the output layer according to

rErmp
(2) =

X
i

@E

@[rmp
(2)]i

: (15)

The chain rule applied to each term of (15) gives

@E

@[rmp
(2)]i

=
X
j

@E

@[Sp
(2)]j

@[Sp
(2)]j

@[rmp
(2)]i

: (16)

The partial derivativ es of the error functionE wrt. Sp
(2) are given b y

@E

@[Sp
(2)]j

=
@E

@[yp]j

@[yp]j

@[Sp
(2)]j

= ([yp]j � [op]j) _�([Sp
(2)]j) : (17)

F urthermore, with (r0; ~r) := rmp
(2) , (q0; ~q) := hm w e obtain

@[Sp
(2)]

@rmp
(2)

= r(r20q0 + (~r � ~r)q0; r20~q + (~r � ~q)~r+ 2r0(~r� ~q)� ~r� ~q � ~r) : (18)

Thus, we get the following update rule for the weights of the output layer

�rmp
(2) = [ (yp � op)� _�(Sp

(2))| {z }
Æp

(2)

]
 @[Sp
(2)]

@rmp
(2)

; (19)
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whereas� denotes scalar multiplication component by component. The update
rule for the weigh ts of the hidden layer is

�rnm
(1) = [ (

X
p

rmp
�(2) 
 Æp

(2))� _�(Sm
(1))

| {z }
Æm

(1)

]
 @[S(1)
m ]

@rnm(1)
: (20)

The derivativ e
@[S

(1)
m ]

@rnm
(1) is the same as in (18) with (r0; ~r) := rnm

(1), (q0; ~q) :=

xn. Finally, we have ��p
(2) = Æp

(2) and ��m
(1) = Æm

(1) :

4. Experiments

We considered the task of short term prediction of the chaotic Lorenz attractor.
The Lorenz attractor is generated by the system f _x = �(x� y); _y = xz + rx�
y; _z = xy � bzg with parameter values � = 10; r = 8

3
; b = 28 and starting state

(x0; y0; z0) = (0; 1; 0). F rom the time interval (12s,17s) 1000 points (sampling
rate �t = 0:005) were tak en, from which the �rst 250 formed the training set
and the last 750 the test set. The prediction step rate was set to 8. The sets
are shown in Figure 1 below.
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Figure 1: T raining set (left) and test set (right)

Both a QMLP and QSMLP wit one hidden layer of 6 nodes were trained over
10000 epoc hs. The 3D data w ascoded in the vector part of one input and
output node, respectively. Averaged over 10 trials the QMLP achiev ed a MSE
(training/test) of 0.005/0.023. Instead, the QSMLP achieved 0.001/0.0013.
Actually, the generalization of the QSMLP w asev en better than indicated
numerically. This can be seen from Figure 2 by comparing size and the right
loop. No better performance could be achiev ed with either one of the netw orks
by using more hidden nodes. Thus, the QSMLP outperformed the QMLP on
this task due to its ability to model the intrinsic properties of the data.
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Figure 2: Generalization of the QMLP (left) and the QSMLP (right)

5. Conclusion

We proposed a novel MLP{type neural netw orkoperating in the quaternion
algebra via spinors as propagation function, which we have called the Quater-
nionic Spinor MLP (QSMLP). We believe that this proposed architecture is
more suitable for the processing of 3D vector data than both the MLP and the
QMLP. In a �rst simulation a better performance as the Quaternionic MLP in
[1] was achiev ed already. Future work will go on in evaluating the QSMLP on
tasks in the �eld of robotic vision. The property of the QSMLP to have weigh ts
that code directly rigid 3D motions might there show useful, for example to
get control parameters immediately.
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