
Simpli�ed neural architectures for
symmetric boolean functions

Bernard Girau

INRIA, France & School of Computer Science, McGill University

3480 University street, Montreal, Quebec H3A 2A7, Canada

email: bgirau@cgm.cs.mcgill.ca

Abstract. The theoretical and practical framework of Field Pro-

grammable Neural A rrays has been de�ned to reconcile simple hardware

topologies with complex neural architectures: FPNAs lead to power-

ful neural models whose original data exchange scheme allows to use

hardware-friendly neural topologies. This paper addresses preliminary

results in the study of the computation pow er of FPNAs. The compu-

tation of symmetric boolean functions is taken as a textbook example.

The FPNA concept allows successive topology simpli�cations of standard

neural models for such functions, so that the number of weights is greatly

reduced with respect to previous works.

1. Introduction

V arious fast parallel implementations of neural networks have been developed

(see [2]). The very �ne-grain parallelism of neural net w orksuses many in-

formation exchanges, so that hardware implementations are more likely to �t

neural computations. Nevertheless, digital hardware implementations of neural

net w orks either handle simpli�ed neural computations or simple neural archi-

tectures, or they limit themselves to few w ell-�ttedneural architectures. An

upstream w orkis preferable: neural computation paradigms may be de�ned

to counterbalance the main implementation problems, and the use of suc h

paradigms naturally leads to neural models that are more tolerant of hard-

w are constraints ([2]). Since the main implementation diÆculties are linked to

area-greedy operators and complex neural architectures, tw o kinds ofhar dware-

adapted paradigms of neural computation may be found. Sev eral models, such

as bit-stream neural net w orks([5]), allow to handle area-sa ving neuralcom-

putations, whereas FPNAs (Field Programmable Neural Arrays de�ned in [1])

lead to complex neural processings based on simpli�ed topologies.

The practical study of FPNAs shows that they lead to very eÆcient hard-

w are implementations of neural networks. The theoretical study of their com-

putation power sho ws that FPNAs appear as more pow erful than standard

multila yermodels for the exact computation of discrete functions (i.e. FP-

NAs require less neural resources). Conversely , FPNAs are less pow erful than

 D-Facto public., ISBN 2-930307-00-5, pp. 383-388B
orks

0,
ES Netw

r 0
A l

0ug
ra

2
NN Neu
e l

'2 l
s i

000 icia
 pr

 Artif
(A

p on
B 8

ro m
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 - S
u

 E an
m ,

urope
)

standard multila yer models for the exact computation of continuous functions

(virtual weigh ts constrained in a subspace).As for the problem of approximate

computing, [1] shows that the topological simpli�cations of FPNAs do not infer

a signi�cant loss of approximation capability.

This paper shows how FPNAs allow simpli�ed neural architectures to com-

pute discrete functions. The case of symmetric boolean functions is studied.

The textbook case of the parity problem is detailed. Section 2. shortly describes

the FPNA computation paradigm. Section 3. shows how this paradigm applies

to symmetric boolean functions: previous results are recalled, subsection 3.1.

shows how the FPNA concept allows to get rid of any shortcut link, and sub-

section 3.2. �nally describes how a FPNA with O(
p
d) weights may replace the

quasi-optimal shortcut perceptron of [6] that has O(d
p
d) weigh ts.

2. Field Programmable Neural Arrays

A FPNA is a set of resources with con�gurable interactions (inspired by FPGA,

Field Programmable Gate Arrays). These autonomous resources are: neurons

that apply standard neural functions to a set of input values, and links that

behave as independent aÆne operators. The links connect the nodes of a

directed graph, eac h node con tainsone neuron. The speci�city of FPNAs is

that a link may be connected or not to the local neuron and to the other local

links. Direct connections betw een aÆne links appear, so that the FPNA may

compute numerous composite aÆne transforms, i.e. numerous virtual neur al

links. A FPNA is formally de�ned as:

� a directed graph (N ; E), where N is a �nite set of nodes, and E is a set

of directed edges without loop: for each node n, Pred(n) (resp. Succ(n))

is the set of the direct predecessors (resp. successors) of n, the set of the

input nodes is Ni = fn 2 N j Pred(n) = ;g,
� a set of aÆne functions (x 7!Wn(p)x+ Tn(p))(p;n)2E : each link is asso-

ciated with an aÆne operator,

� a set of neurons ((�n; in; fn))n2N�Ni
, where �n 2 IR, in is a function from

IR2 to IR, and fn is a function from IR to IR: for eac h (non-input) node,

one neuron resource handles any neuron computation in a sequential way,

� for each node n, an integer an � 0: expected number of received v alues,

or n umber of global inputs sent by n if n 2 Ni,

� for each node n, several binary values: 8 p 2 Pred(n), rn(p) set to 1 i�

link (p; n) is connected to the neuron in n; 8 (p; s) 2 Pred(n)� Succ(n),

Rn(p; s) set to 1 i� links (p; n) and (n; s) are connected; 8 s 2 Succ(n),

Sn(s) set to 1 i� the neuron in n is connected to link (n; s).

When a FPNA resource receives values, it applies its local operator(s), and

it sends the result to all neighboring resources to which it is locally connected (a

 D-Facto public., ISBN 2-930307-00-5, pp. 383-388B
orks

0,
ES Netw

r 0
A l

0ug
ra

2
NN Neu
e l

'2 l
s i

000 icia
 pr

 Artif
(A

p on
B 8

ro m
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 - S
u

 E an
m ,

urope
)

link may handle several values, and it may directly send them to other links).

The follo wing sequential computation illustrates the basic FPNA principles.

This computation algorithm handles a list of tasks L that are processed ac-

cording to a FIFO scheduling. Each task [(p; n); x] corresponds to a value x

sent on a link (p; n). Each node n in N �Ni has got local variables cn and xn,

initially set as cn = 0 and xn = �n.

Initialization: For each input node n in Ni, an values
�
x
(i)
n

�
i=1::an

are

given (global inputs of the FPNA), and the corresponding tasks [(n; s); x
(i)
n]

are created for all s in Succ(n) such that Sn(s) = 1.

Sequential processing: (while L is not empty)

1. remove the �rst element [(p; n); x] from L
2. compute x0 =Wn(p)x+ Tn(p)

3. for all s 2 Succ(n) suc h thatRn(p; s) = 1, create [(n; s); x0]

4. if rn(p) = 1 (the neuron in n \receives" the value of task [(p; n); x])

� update cn and xn : cn = cn + 1, xn = in(xn; x
0)

� if cn = an (the local neuron computes its output)

i. y = fn(xn), cn = 0, xn = �n

ii. for all s 2 Succ(n) such that Sn(s) = 1, create [(n; s); y]

3. Symmetric boolean functions by FPNAs

The neural computation of symmetric boolean functions has been a widely dis-

cussed problem. The quasi-optimal results of [6] answer a question that w as

posed as early as in [3]. A boolean function f : f0; 1gd ! f0; 1g is said symmet-
ric if f(x1; : : : ; xd) = f(x�(1); : : : ; x�(d)) for an ypermutation � of f1; : : : ; dg.
An example is the d-dimensional parity problem: it consists in classifying vec-

tors of f0; 1gd as odd or even, according to the number of non zero values

among the d coordinates. This problem may be solved b yd-input multilayer

perceptrons (MLP) or shortcut perceptrons. A MLP consists of several ordered

layers of sigmoidal neurons. Two consecutive layers are fully connected. A layer

which is not the input layer nor the output layer is said hidden. A shortcut

perceptron also consists of several ordered layers of sigmoidal neurons. But a

neuron in a layer may receive the output of any neuron in any previous layer.

The searc h for optimal tw o-hidden layer shortcut perceptrons in [6] has

led to solve the d-dimensional parit y problem with only
p
d(2 + o(1)) neu-

rons, thanks to an iterated use of a method in troduced in [4]. The shortcut

links and the second hidden layer are essential in this work, though there

is no shortcut link tow ards the output neuron. This neural net w orkuses

d(2
p
d+ 1 + o(1)) weights. The results of [6] apply to any symmetric boolean

function. Figure 1(a) sho ws the topology of the optimal shortcut netw ork

 D-Facto public., ISBN 2-930307-00-5, pp. 383-388B
orks

0,
ES Netw

r 0
A l

0ug
ra

2
NN Neu
e l

'2 l
s i

000 icia
 pr

 Artif
(A

p on
B 8

ro m
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 - S
u

 E an
m ,

urope
)

of [6] for the 15-dimensional parity problem. In suc h a neural netw ork, the

�rst hidden layer may contain
lp

d
m
neurons suc h that the i-th neuron of

this layer computes yi;1 = �

0
@ dX

j=1

xj +�i

1
A, where �(x) =

�
0 if x < 0

1 if x � 0
.

The second hidden layer contains at most

�
d+1

dpde
�
: its i-th neuron computes

yi;2 = �

0
B@
bpdcX
j=1

wi;j;2yj;1 + (�1)i
dX

j=1

xj

1
CA. Then y = �

0
@

p
dX

j=1

wi;j;3yj;2 +�

1
A is

computed by the only output neuron.

3.1. Removing the shortcut links

The construction in [6] implies that for any (i; j), (�1)i and wi;j;2 have opposite

signs. This property may be used so that all shortcut links (betw een the input

and the second hidden layer) are virtually replaced by some direct connections

betw een incoming and outgoing links in the �rst hidden layer of a FPNA. This

FPNA has got d
p
d(1 + o(1)) weights, instead of d

p
d(2 + o(1)) weigh ts in [6].

More precisely, the arc hitecture ofthe FPNA is the same as the shortcut

perceptron of [6], without all shortcut links. The weigh ts of the links betw een

both hidden layers are as in [6]. Each neuron is fully connected to all incoming

and outgoing links (8 (p; n) rn(p) = 1 and 8 (n; s) Sn(s) = 1). If n is the i-th

node of the �rst hidden layer, and if s is the i-th node of the second hidden

layer, then for any p 2 Pred(n), there is a direct connection betw een (p; n) and

(n; s) (i.e. (Rn(p; s) = 1). If n is the i-th node of the �rst hidden layer, then

for any p 2 Pred(n), Wn(p) = � 1
wi;i;2

and Tn(p) = 0. If n is the i-th node of

the �rst hidden layer, then �n = � �i

wi;i;2
. Figure 1(b) sketches the architecture

of suc h a FPNA for a 15-dimensional symmetric boolean function.

3.2. Towards a simpli�ed 2D architecture

Even without shortcut links, the FPNA of �gure 1(b) still does not ha vea

hardware-friendly architecture. A more drastic simpli�cation of the arc hitec-

ture is expected. The full connection betw een consecutive layers may be virtu-

ally replaced by the use of sparse inter-layer and intra-la yer FPNA links.

The construction of a FPNA in section 3.1. does not depend on the symmet-

ric boolean function. On the contrary, the determination of a hardware-friendly

FPNA for symmetric boolean functions takes advantage of function-dependent

weight similarities in [6]. Such successful determinations have been performed

for various symmetric boolean functions and input dimensions: it appears that

for any d and for any symmetric boolean function f , a FPNA with the same

number of neurons as in [6], but with only O(
p
d) weights computes f exactly

as in [6]. Nevertheless, this assertion has not y et been formallypro ved. The

 D-Facto public., ISBN 2-930307-00-5, pp. 383-388B
orks

0,
ES Netw

r 0
A l

0ug
ra

2
NN Neu
e l

'2 l
s i

000 icia
 pr

 Artif
(A

p on
B 8

ro m
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 - S
u

 E an
m ,

urope
)

neurons

(b) FPNA without shortcut link
(c) FPNA with 2D architecture

locally con�gured

resource connections

links

(a) 2-hidden layer shortcut perceptron ([6])

x15x1

x15x1

x1, x2,
x3, x4

x5, x6,
x7, x8

x9, x10,
x11, x12

x13, x14,
x15

Figure 1: Neural architectures for the parity problem (d = 15)

parit y problem may be taken as an example: in [6], the weight of the link

betw eenthe i-th neuron of the �rst hidden layer and the j-th neuron of the

second hidden layer only depends on (�1)j when i 6= 1. This property may be

used so as to build a hardware-friendly FPNA as follows.

The number of nodes in each hidden layer is the same as the number of

neurons in [6]. The number of input nodes is the number of nodes in the �rst

hidden layer. Each input node sends up to
lp

d
m
inputs.

The inter-layer links are:for an yi, one link from the i-th input node towards

the i-th node of the �rst hidden layer, and one link from the i-th node of the

�rst hidden layer towards the i-th node of the second hidden layer, and one

link from the i-th node of the second hidden layer tow ards theoutput node.

Moreover, for an y j > 1, there is a link between the �rst node of the �rst

hidden layer and the (2j � 1)-th node of the second hidden layer.

The intra-la yer links are:in both hidden layers, for any i, one link from the

 D-Facto public., ISBN 2-930307-00-5, pp. 383-388B
orks

0,
ES Netw

r 0
A l

0ug
ra

2
NN Neu
e l

'2 l
s i

000 icia
 pr

 Artif
(A

p on
B 8

ro m
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 - S
u

 E an
m ,

urope
)

i-th node tow ards the (i+1)-th node, another one tow ards the (i� 1)-th node.

The Sn(s), rn(p) and (Rn(p; s) parameters are set so as to ensure a virtual

full connection scheme between consecutive layers. Moreover the (Rn(p; s)

parameters are set so that any virtual shortcut link involv es the �rst node of

the �rst hidden layer. See [1] for more details and for the weight determination.

This FPNA (for any number d of inputs) is easy to map onto a 2D hardware

topology, whereas the equivalent shortcut perceptron in [6] rapidly becomes too

complex to be directly implemented when d increases. Figure 1(c) shows the

architecture of the FPNA for the 15-dimensional parity problem.

Moreover, the theoretical study of [1] shows that the above FPNAs satisfy

several conditions that ensure a computation time proportional to the number

of weights as in standard multila yer models.Therefore, a O(
p
d) computation

time is achieved thanks to the topological simpli�cations of the FPNAs.

4. Conclusion

The FPNA framework is a neural computation paradigm that has been de�ned

to �t digital hardware devices. This paper shows how FPNAs allow successive

topological simpli�cations of the standard neural architectures that compute

symmetric boolean functions. The shortcut links and then the full inter-layer

connections are removed: they are replaced by virtual links based on numerous

multicast composite connections. This work allows to compute d-dimensional

symmetric boolean functions by neural models with O(
p
d) weights, instead of

O(d
p
d) w eigh tsin the best previous works. The results of [6] are proved to

be quasi-optimal in the number of neurons. The question of the above FPNAs

being quasi-optimal in the number of weigh ts is now posed.

References

[1] B. Girau. Du parall�elisme des mod�eles connexionnistes �a leur implantation

parall�ele. PhD thesis nÆ 99ENSL0116, ENS Lyon, 1999.

[2] B. Girau. Neural netw orks on FPGAs: a survey. In Proc. Neural Compu-

tation, 2000. T o be published.

[3] W. Kautz. The realization of symmetric switc hingfunctions with linear-

input logical elements. IRE Trans. Electron. Comput., EC-10, 1961.

[4] R. Minnick. Linear-input logic. IEEE T rans. Ele ctron. Comput., EC-10,

1961.

[5] V. Salapura. Neural netw orks using bit-stream arithmetic:a space eÆcient

implementation. In Proc. IEEE Int. Conf. on Circuits and Systems, 1994.

[6] K. Siu, V. Roychowdhury , and T. Kailath. Depth-size tradeo�s for neural

computation. IEEE Trans. on Computers, 40(12):1402{1412, 1991.

 D-Facto public., ISBN 2-930307-00-5, pp. 383-388B
orks

0,
ES Netw

r 0
A l

0ug
ra

2
NN Neu
e l

'2 l
s i

000 icia
 pr

 Artif
(A

p on
B 8

ro m
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 - S
u

 E an
m ,

urope
)

