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Abstract. A novel variable-rate vector quantizer (VQ) design algo-
rithm using both fuzzy and competitive learning technique is presented.
The algorithm enjoys better rate-distortion performance than that of
other existing fuzzy clustering and competitive learning algorithms. In
addition, the learning algorithm is less sensitive to the selection of initial
reproduction vectors. Therefore, the algorithm can be an e�ective alter-
native to the existing variable-rate VQ algorithms for signal compression.

1. Introduction

Entropy-constrained vector quantization (ECVQ) [1] algorithm is a well-known
method for variable-rate VQ design. The technique employs batch training
process where components of VQ are constructed iteratively one at a time.
In addition, during the course of the iterative construction procedure, ECVQ
algorithm utilizes crisp clustering technique where each training vector is as-
signed to only one cluster for training set partitioning. The algorithm have the
following disadvantages. First, the performance of iterative design procedure is
sensitive to the selection of initial reproduction vectors. Therefore, a bad local
optimum might be achieved if an improper set of initial codewords is selected.
Moreover, since many training vectors might have features belonging to more
than one clusters, it is not nature to assign each training vector to only one
cluster during set partitioning process.

To alleviate these drawbacks, a number of competitive learning (CL) algo-
rithms [4, 6] and fuzzy clustering techniques [3, 5] have been proposed for VQ
design. As compared with the traditional iterative algorithms, the CL-based
algorithms are shown to have more robust rate-distortion performance because
the training process of these algorithms are performed in continuous mode.
The fuzzy clustering algorithms can also improve the performance of the VQ
design since better codevectors might be found by fuzzifying the boundary of
clusters. Although using CL or fuzzy clustering algorithm along can improve
the design of VQs, it is expected that the fusion of these two techniques can
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improve the performance of VQs further because the resulting VQs can have
the advantages of both algorithms.

The objective of this paper is to present a novel variable-rate VQ design
algorithm, termed fuzzy entropy-constrained competitive learning (FECCL) al-
gorithm, which performs VQ training in both continuous and fuzzy mode. To
achieve continuous training, similar to the CL algorithms, the weight vectors
of the algorithm are updated for each input training vector. However, the con-
tinuous training process is not based on the winner-take-all scheme adopted
by usual CL algorithms, which results in crisp training. In the FECCL algo-
rithm, for any input training vector, its membership grade in each cluster is
�rst computed. All the weight vectors are then updated according to these
membership grades. In order to control the average rate of the VQ after train-
ing process, when computing the membership functions, the length of channel
codeword representing each weight vector will be taken into account. Simu-
lation results show that the FECCL algorithm has more robust and superior
rate-distortion performance than other existing VQ design algorithms where
only crisp or batch training are used.

2. Preliminaries

Recall that the encoder W of a variable-rate VQ [1] can be decomposed into
two parts. The �rst part is the function w which maps a source vector x into
a source index i. The second part, 
, maps the source index i into a channel
codeword ci. The decoder Z can be similarly decomposed into two parts: 
�1

and z. The mapping 
�1 is the inverse of 
, and maps ci back to source index
i. The mapping z outputs a reproduction vector z(i) for the source index i.
The pair (W;Z) is referred to as a variable-rate VQ because a source vector
is represented by a single channel codeword, and the channel codewords for
di�erent source vectors are usually not of the same length.

Given a source vector x, let j
(w(x))j be the length of the channel codeword
representing x. In addition, let dn(u;v) be the mean-squared distance between
vectors u and v. For a given set of training vectors X = fxj ; j = 1; :::; tg, where
t is the number of training vectors in the training set, the average rate and av-
erage distortion of the VQ are then given as R = 1

nt

Pt

j=1 j
(w(xj ))j and

D = 1
nt

Pt

j=1 dn(xj ; z(w(xj ))), respectively. Let Dn(R) be the function indi-
cates the lowest possible average distortion that can be achieved by a VQ with
blocklength n under the rate constraint R. Although the Lagragian methods
can not be used for �nding D(R) [1], they can be used for �nding the convex
hull of D(R) be minimizing the following functional:

C(w; z; 
) =
tX

j=1

dn(xj ; z(w(xj))) + �j
(w(xj ))j: (1)

Here, � has an interpretation as the slope of a line supporting the convex hull.
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We now discuss the optimal conditions for w,z and 
 that minimizes the
functional C(w; z; 
). Fix 
 and z, the mapping w that minimizes (1) is the
one that satis�es

w(xj) = arg min
1�i�N

J(xj ; z(i)); (2)

where N is the number of reproduction vectors, and J(xj ; z(i)) = dn(xj; z(i))+
�j
(i)j. Next, for �xed w and 
, the mapping z that minimizes (1) is given as

z(i) = centroid of fxj : w(xj) = ig: (3)

Finally, the optimal channel encoder 
 for �xed w and z is the entropy encoder
designed based on the probability p(i) of each reproduction vector z(i). That
is, the optimal 
 satis�es

j
(i)j = log
1

p(i)
: (4)

The ECVQ algorithm uses (2)(3)(4) iteratively for the minimization of
C(w; z; 
) given in (1). The scheme is sensitive to the initial parameters since
reproduction vectors are constructed in batch mode. If the initial 
 and z are
improperly chosen, then the ECVQ algorithm can easily converge to a bad local
minimum. In addition, the clustering operation is a crisp clustering process.
Better codewords might be found if a fuzzy clustering process is employed.

The objective of ECCL algorithm [4] is also to minimize C(w; z; 
). How-
ever, unlike the ECVQ algorithm, the ECCL performs the continuous training
process for the codebook construction. Given 
, the ECCL algorithm �nds the
optimal w and z satisfying eqs. (2) and (3), respectively, using the following
winner-take-all competition scheme [4]:

z(i�)  z(i�) + �(i�)(xj � z(i
�)); (5)

z(i)  z(i); i 6= i�; (6)

where xj is an input training vector in the training set X , �(i) is the learning
rate of the i-th weight vector, and i� is the index of the winning weight vector
based on the following competition rule:

i� = arg min
1�k�N

J(xj; z(k)); (7)

Since the ECCL algorithm performs weight vector updating for each input
training vector, the algorithm has more robust performance as compared with
ECVQ algorithm.

The FECVQ algorithm [3] performs fuzzy clustering during the course of
iterative training process. In order to incorporate the membership functions
of training vectors into the clustering process, the objective of FECVQ is to
minimize the following objective function

Cf (�; z; 
) =
tX

j=1

NX

i=1

(�i;j)
m(J(xj; z(i))); (8)
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where m > 1 indicates the degree of fuzziness, and f�i;j; i = 1; :::; Ng is the set

of membership values associated with training vector xj , satisfying
PN

i=1 �i;j =
1 and �i;j � 0. The algorithm employs an iterative training procedure that
optimizes �, z, and 
 one at a time. In particular, for �xed z and 
, the optimal
membership functions � minimizing Cf (�; z; 
) are given as [3]

�i;j =
( 1
J(xj ;z(i))

)
1

m�1

PN

l=1(
1

J(xj ;z(l))
)

1

m�1

: (9)

Since performing fuzzy clustering for codebook construction, FECVQ can �nd
better reconstruction vectors. However, FECVQ also performs training in
batch mode, and therefore is sensitive to initial parameters.

3. FECCL Algorithm

The FECCL algorithm has the advantages of both FECVQ and ECCL algo-
rithms. In the algorithm, similar to ECCL technique, the training process is
performed in continuous mode. However, unlike the ECCL algorithm, where
the weight vector updating is based on winner-take-all scheme, the FECCL al-
gorithm updates weight vectors according to the membership functions, which
measure the degree of closeness between the input training vector to each
weight vector. During the course of FECCL design, the reproduction vec-
tors z(i); i = 1; :::; N , are �rst updated in fuzzy and continuous mode based on
a �xed channel encoder 
. The source encoder w is then constructed based on
the updated z. After that, the channel encoder 
 is designed according to the
new w. The same process is repeated until the convergence of the algorithm.
The design procedure of FECCL algorithm is summarized in Figure 1.

We now discuss each step of the algorithm in more detail. For any input
training vector xj 2 X , the FECCL algorithm updates weight vectors z(i); i =
1; :::; N , according to the following rule:

z(i) z(i) + �(i)(�i;j)
m(z(i) � xj); (10)

where �(i) is the learning rate of z(i). At the �rst K iterations of FECVQ
algorithm, where K > 0 can be prespeci�ed before the design, the membership
functions �i;j; i = 1; :::; N; are computed according to (9), and therefore all the
weight vectors are updated for each input training vector xj. Consequently,
FECVQ algorithm is insensitive to the selection of initial weight vectors. After
K iterations, since the VQ encoding process is a crisp selection process, in
order to �nd codewords well-suited for crisp encoding, the FECCL algorithm
employs a novel fuzzy-to-crisp transition process for codebook construction. In
the process, as the number of iterations increases, the number for weight vectors
to be updated for each training vector is gradually reduced until winner-take-all
updating mode is reached.

To describe the fuzzy-to-crisp transition process in more detail, we �rst
denote Ij(k) as the set of weight vectors to be updated when xj is used as the
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Training Data

Iteration

until

convergence.

Construct source encoder

based on eq.(14)

Design reproduction vectors

 using eq.(10)

Design channel encoder

based on eq.(4)

Figure 1: Design procedure of FECCL algorithm.

input training vector at k-th iteration. Therefore, given any training vector
xj, the set Ij(k) = fz(i); i = 1; :::; Ng for k = 1; :::; K: Since all weight vectors
in the VQ are included in the set Ij(k) for updating, similar to FECVQ, the
computation of membership function is based on (9). For k > K, we gradually
reduce the number of weight vectors in Ij(k). In the procedure for removing
weight vectors at iteration k > K, we �rst compute �J(k � 1) de�ned as

�J(k � 1) =
1

N (Ij(k � 1))

X

z(i)2Ij(k�1)

J(xj ; z(i)); (11)

where N (Ij(k� 1)) is the number of weight vectors in set Ij(k� 1). Based on
Ij(k � 1) and �J(k � 1), the set Ij(k) is constructed according to

Ij(k) = fz(i) 2 Ij(k � 1) : J(xj; z(i)) � �J(k � 1)g: (12)

Given xj , for the weight vectors which are outside Ij(k), their corresponding
membership functions are set to zero, and the weight vectors are not updated.
On the other hand, for the weight vectors z(i) which are inside Ij(k), the
corresponding membership functions are then given as

�i;j =
( 1
J(xj ;z(i))

)
1

m�1

P
z(l)2Ij (k)

( 1
J(xj ;z(l))

)
1

m�1

: (13)

These weight vectors are then updated according to (10) with �i;j given in (13).
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Note that when k increases, the number of weight vectors in Ij(k) decreases.
Therefore, in the FECCL algorithm, the iteration number k might achieve a
point where, for each of the training vector xj 2 X , its Ij(k) contain only
one element. In this case, the corresponding weight vector updating process is
identical to the winner-take-all scheme adopted by the ECCL algorithm.

At each iteration of FECCL, after all the training vectors xj have been used
for weight vector updating, the source encoder w is then constructed by the
following rule:

w(x) = arg min
1�i�N

J(x; z(i)); (14)

where x is any input vector for encoding, and z(i); i = 1; :::; N; are the repro-
duction vectors obtained from weight vector updating.

After w has been determined, we then partition the training set X into N
clusters C1; :::; CN , where Ci = fxj : w(xj) = ig. The probability p(i) that
the reproduction vector z(i) will be selected by the source encoder can then be

approximated as p(i) = N (Ci)
t

;where N (Ci) is the number of training vectors
in Ci. The optimal channel encoder 
 is then designed according to (4).

W e note that the selection of� value e�ects the resulting rate of the VQ
design. However, similar to other variable-rate VQ methods, it is di�cult to
�nd the relationship between average rate of a VQ and � value analytically.
Hence, the � value achieving a given target rate Rc might have to be found on
the trial-and-error basis.

Finally, as the number of iterations k increases, the FECCL algorithm grad-
ually reduce to ECCL algorithm due to the fuzzy-to-crisp transition process.
Since ECCL is guaranteed to converge [4], the weight vectors of FECCL algo-
rithm also converges for su�cient number of iterations.

4. Sim ulation Results and Concluding Remarks

This section presents some simulation results of FECCL algorithm. The train-
ing images for the VQ design are two 512� 512 images \Pepper" and \Girl."
The dimension of training vectors and weight vectors is 4� 4.

Figure 2 shows the rate-distortion performance of various VQ design algo-
rithms. All the methods are designed subject to the same number of reproduc-
tion vectors N = 512. The degree of fuzziness for FECCL algorithm is set to be
m = 1:1. The fuzzy-to-crisp transition process will be started in the FECCL
algorithm after K = 2 iterations are completed. The PSNR values for each
algorithm shown in the �gure are de�ned as 10 log 2552= (MSE of the recon-
structed images). Note that the PSNR values are measured on the test image
\House" with dimension 512 � 512. From Figure 2, it is observed that the
FECCL algorithm signi�cantly outperforms FECVQ and ECVQ algorithms.
In particular, at the average rate 0.2 bpp, the PSNR of FECCL algorithm is
29.4 dB; whereas, the PSNRs of FECVQ and ECVQ algorithms are only 26.6
dB and 28.0 dB, respectively. This is because FECCL trains weight vectors in
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Figure 2: The performance of various VQ design algorithm for image coding.
The PSNR is measured on the test image \House."

both fuzzy and continuous modes, and therefore the algorithm is less sensitive
to the initial weight vectors, and better reproduction vectors can be found.

Although the FECCL algorithm gradually reduce to the ECCL algorithm as
the iteration continues, the FECCL algorithm still has more robust performance
with respect to the selection of initial weight vectors. Figure 3 shows the rate-
distortion performance of both FECCL and ECCL algorithms with a poor set
of initial weight vectors in which the value of every elements of each vector is
100.0 + r, and r is taken randomly from the interval [-1,1]. From Figure 3, it
is observed that FECCL outperforms ECCL by at most 1.45 dB (at rate 0.31
bpp). Because of using the fuzzy updating/clustering scheme, the initial weight
vectors have less impact on the the resulting rate-distortion performance for
FECCL algorithm. On the other hand, the ECCL algorithm is based on the
crisp winner-take-all scheme, and therefore the corresponding performance is
less robust as compared with FECCL algorithm.

From the results shown above, we conclude that the FECCL algorithm has
robust and superior performance for image coding. Therefore, the algorithm
can be an e�ective alternative to other existing variable-rate VQ algorithms.
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Figure 3: The PSNRs of FECCL and ECCL with a poor initial set of 512
codewords.
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