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Abstract. We present local conditions for input-output stability of recurrent neu-
ral networks with time-varying parameters introduced for instance by noise or
on-line adaptation. The conditions guarantee that a network implements a proper
mapping from time-varying input to time-varying output functions using a local
equilibrium as point of operation. We show how to calculate necessary bounds on
the allowed inputs to keep the network in the stable range and apply the method
to an example of learning an input-output map implied by the chaotic Roessler
attractor.

1 Introduction

A strong motivation for investigations on recurrent neural networks (RNN) is their abil-
ity to model for given initial conditions the time-behavior of arbitrary dynamical sys-
tems [3]. This approximation capability, the possibility to incrementally adapt a network
to a given task, and the intuition that a recurrent network may draw on the time-structure
of its inputs render them generic candidates for learning input-output behavior. And thus
a number of recent results show that RNN’s can map successfully time-varying input
functions into a desired time-varying trajectory for a wide range of tasks [4,7,8,11].

On the other hand, due to the non-linear nature, the usually large number of state
variables (neurons) and the distributed nature of computation, even the most basic net-
work properties as existence and number of equilibria, convergence, boundedness, or
stability are different to assure. They have been subject to intensive research already
in the case of zero or constant input [1,2,6], mostly with the objective to show either
that the origin is globally absolute stable or to provide respective local conditions for
multi-stable networks with many equilibria. However, when there is time-varying input
and additional time-variance in the weights, the task to show stability becomes even
more difficult and the results based on Lyapunov functions mostly rely on coarse ap-
proximations of the system by interval matrices and yield computationally intractable
conditions [5,10,12].

In this contribution we extend a framework based on frequency functions intro-
duced in [10,11] for investigating input-output stability of the origin in the presence of
time-varying weights to the case of multi-stable networks. We assume that there is a
0 The author is supported by the German Research Foundation (DFG) RI 621/2-1
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non-trivial equilibrium with a finite basin of attraction around which we obtain a proper
mapping from the given input to the desired output function. We address the problem
how to avoid that the time-varying input drives the network out of this stability region
into the basin of attraction of a different attractor or a region where internally driven per-
sistent oscillations occur. Such behavior is undesirable as it contradicts the requirement
of a proper map from input to output and would render generalization impossible. Fur-
ther we guarantee this type of stability in the presence of time-variance in the weights
for instance caused by noise or on-line adaptation, i.e. we prove that the network is
locally structurally stable as defined in [5]. It is obvious that this requires to limit the
allowed time-invariance as well as the inputs and we will give a constructive approach
to obtain suitable bounds. In Section 2 we present the local stability framework and
in Section 3 we derive the output bounds. In Section 4 we demonstrate the application
of the framework for a trajectory learning task, where we expect to obtain as working
point typically a non-trivial equilibrium, and finally we add some discussion.

2 Stability analysis

In this section we derive stability conditions for a network with given local equilibrium.
As the resulting conditions can directly be applied based on the material presented here
and without detailed knowledge of their theoretical derivation we refer the interested
reader for more details to [9–11]. We assume that the network is given in the form

_x = �Dx+ ( eW +� eW)e'(x) + u(t); (1)

wherex 2 Rn is the state vector,D = diagfdig > 0 2 Rn�n is constant,eW 2 Rn�n

is the time-stationary weight matrix,� eW(t) the time-varying weight matrix,e'(x) =
('1(x1); : : : ; 'n(xn))

T the non-linear time-invariant activation function, andu(t) 2
R
n the external input function. In [11] we have shown in detail how to incorporate the

time-variance� eW as additional non-linear feedback, such that we can instead of (1)
consider

_x = �Dx+W'(y; t) + u(t); y = Cx (2)

whereW 2 Rn�(n+2N) is a constant matrix andN the number of time-varying weights.
The output matrixC 2 R

n�(n+2N) is chosen to obtain an enlarged feedback vector
y 2 R

n+2N such that that'(y) includes for each� ~wij(t) additional time-varying
componentsklij(t); k

u
ij(t). It then has the form

'(y) = ('1(x1); : : : ; 'n(xn); : : : ; k
l
ij(t)xj ; : : : ; k

u
ij(t)xj ; : : : )

T 2 Rn+2N ;

such that� ~wij(t)xj = �klij(t)xj + kuij(t)xj for positive bounded parameters0 �
klij(t) � kij ; 0 � kuij(t) �

�kij . The systems corresponding to (1) and (2) respectively
are shown in block diagram form in Fig. 1 (a),(b). Subsequently we restrict the analysis
to the system (2). Note that this inclusion of time-variance in the feedback implies that
we can not assume any Lipschitz conditions on the time-varying components of'. The
stability analysis now proceeds in four steps:
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Fig. 1. (a) The original network with time-varying weights. (b) Reparametrisation of the time-
variance as positive feedback using enlarged output y = Cx and a modifiedW,'.GD abbreviates
the linear differential operator given by _x = �Dx;y = Cx. (c) Local sector conditions at the
equilibrium x

? which hold only for xi � minxi.

[1] We identify in the network (2) a linear subsystem _x = �Dx +We + u with
non-linear feedback e = '(y; t). The linear part can be Laplace transformed and is
described in the complex domain by

y(s) = C(sI +D)�1 (We(s) + u(s)) = Ge(s) + GDu(s) = GD(u(s) +We(s));

where we define the transfer functions GD(s) = C(sI +D)�1 and G(s) = GDW.

[2] We assume there exist local sector bounds �ki on the original non-linear acti-
vation functions 'i, i.e. the graph of (xi; 'i(xi)) is between the xi-axis and the line
y = �kixi if the origin is moved to the local equilibrium (x?i ; 'i(x

?
i )) as shown in

Fig. 1 (c). The stability result below will be valid only if we can show that the system
trajectory does not leave the region, where these local sector conditions hold. Naturally
the upper bounds k ij and �kij for the time-varying parameters k lij(t); k

u
ij(t) are inter-

preted as sector bounds as well and therefore all components of '(y) are in positive
sectors.

[3] From the application of the multivariable Popov theorem we obtain the follow-
ing frequency condition [11]: The network (1) is stable, if there exist scaling matrices
P = diagfpi; pij ; pijg > 0;Q = diagfqi;0;0g > 0 2 Rn�(n+2N) such that

sup
!

max
i

�i Re
�
P((I + {!Q)G({!)� �K�1)

�
< 0; (3)

where Re [M] = 1
2 (M

� + M) denotes the hermitian part of the complex matrix M,

G({!) = C(D + {!I)�1W 2 R
(n+2N)2 is the frequency matrix of the system (2), and

�K = diagf�ki; : : : ; kij ; : : : ;
�kij ; : : : g includes the upper sector bounds.

[4] Using the Kalman-Yakubovich-Lemma the condition (3) can be reformulated
as a linear matrix inequality constraint. It is equivalent to the problem to find matrices
H = HT > 0 2 Rn�n ;P, and Q such that�

DH+ HD HW + CTP� DCTQeWTH+ PC�QCD �QC eW�WTCTQ+ 2P �K�1

�
> 0: (4)
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Maximization of the sector bounds K is now a convex optimization problem subject
to the constraint (4) and can efficiently be solved by interior point algorithms available
in standard software (Matlab, SCILAB) [10]. The local equilibrium leads to additional
constraints on the �ki, for instance for tanh we know that �ki � '0i. As these additional
constraints as well as the inequality (4) can be directly submitted to software and involve
only known system data the stability condition can be applied in practice without further
regard to its theoretical background. The numerical maximization then yields as well the
local sector bounds on the non-linear activation functions' i as, if time-varying weights
are included, a stable region in weight space defined component wise as ~w ij � kij �

~wij(t) � ~wij + �kij in which the network may be adapted or subject to noise without
the risk of instable behavior.

3 Computation of the input bounds

It remains to compute a bound on the input such that the trajectories of the system (2)
do not leave the region where the local sector conditions hold. This is always necessary
because for a non-trivial equilibrium the sector conditions can not hold globally. Indeed,
globally valid sectors would imply, that the local equilibriumx ? for the unforced system
with �W(t)�0 and u(t) � 0 is also global asymptotically stable. But this contradicts
the fact that the system always admits the trivial equilibrium at the origin. Thus we
resort to a classical Lyapunov function approach to compute suitable bounds on ju(t)j.
Writing the dynamical equation in terms of the shifted state vector x̂ = x � x? and
using a Taylor series expansion of the non-linear function we obtain

_̂x = �Dx̂+W

�
'(x?) +'0(x?)x̂+

1

2
x̂T'00(x?)x̂+O(kx̂k3)

�
+ u(t)�Dx?

Solving the Lyapunov equation for the linear parts we find P = P T > 0 for given
Q = diagfqig > 0 such that

(�D+W'0(x?))
T
P+ P (�D+W'0(x?)) = �Q < 0 (5)

and then the derivative of the corresponding quadratic Lyapunov function 1
2 x̂

TPx̂ is

�x̂TQx+ x̂TP
�
xT'00(x?)xT + u(t)

�
; (6)

which is smaller than zero if j'00(x)j and ju(t)j are sufficiently small. In general this
may result in a very small bound on u(t) but for the saturation functions usually em-
ployed in neural networks the first and second derivatives of '(x ?) tend very rapidly to
zero and substantially simplify (5), (6). We will use this in the example below.

4 Learning trajectories of the Roessler attractor

In the following we analyze stability of a network adapted to implement a mapping
between functions z1(t); z2(t) defining the input and z3(t) as reference output. The
functions zi(t) are given by the chaotic Roessler dynamics

_z1 = �z2 � z3; _z2 = �z1 + 0:2z2; _z3 = 0:2 + z1z3 � 5:7z3: (7)
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Fig. 2. (a) 500 time-steps of the input (z1; z2) and output (z3) trajectories. The learned output
x has very small errors only at the high peaks in z3. (b) The bound on the admissible input at
x? = 4:7 and '(x?) = tanh(x?).

Note that we do not attempt to learn the vector field of the attractor but rather as-
sume that it implicitly defines given input-output transform which can be learned. From
Fig. 2 (a) it can be seen that we choose a hard task: the network has to keep the output
very small most of the time and only eventually there occur fast large peaks in z 3, whose
position and height have to be detected from the irregularities in the quasi-oscillations
of the inputs z1; z2. The learned network achieves that task very well, the trajectories of
x1 and z3 are practically coincident except for small errors at the peaks, see also Fig. 2.
It turns out that the network needs a number of neurons close to saturation for imple-
menting a kind of bias, which leads to a non-trivial equilibrium as point of operation.

We use a fully connected twenty neuron network and input weights to supply a
linear combination of z1(t); z2(t) as input to the network. As output we choose x1(t)
and z3(t) is the reference function which results in the network equations

_xi = �xi +

20X
j=1

wij'j(xj) + ui(t) = �xi +

20X
j=1

wij'j(xj) + wz1z1(t) + wz2z2(t);

where 'j(xj) = tanh(xj) in the experiments. For adaptation we employ fully continu-
ous backpropagation (as in [7]) to minimize the error functionalE(t 0; t1) =

R t1
t0
(x1(t)�

zr(t))
2dt taken over the first 1250 time steps of numerical integration of (7).

The adapted network has (for zero input) the equilibrium x ? = (0; x?2; : : : ; x
?
20),

where for i > 1 : jx?i j > 4:7. Therefore '0(x) � (1; 0; : : : ; 0) and '00(x) � 0 as
well. The Lyapunov equation (5) now admits the simple diagonal solution P = pI,Q =
qI; p; q>0 and (6) holds, if �qkx(t)k2 + px(t)Tu(t) < 0. We can easily monitor this
condition on-line and restrict inputs appropriately whenever a coordinate x i approaches
the boundary, where the local sector conditions fail. Because we can choose p = q = 1
in the example a global estimate for ju(t)ij is given by the distance of x?i to the point
xmin where the line �ki(xi + x?i ) and tanh(xi) intersect as was shown in Fig. 1 (c). As
the tanh becomes very flat very quickly already small sectors yield large x i-ranges and
therefore admit reasonable large inputs ju i(t)j. In Fig. 2 (b) there are shown the input
bounds with respect to the point x?s = 4:7 for various sector widths, we obtained in
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the experiment �k � 0:07 and indeed all inputs were sufficiently small, i.e. we learned a
locally stable network.

5 Discussion

We derived a framework to analyze stability of the local input-output behavior of a re-
current network based on frequency domain conditions and a interior point optimization
scheme. Though the network first was adapted and solves the task without regard to such
conditions, we gain from the a posteriori analysis that (i) we can use online-adaptation
within the given bounds for the time-varying weights and (ii) can apply different inputs
within the given bounds, for instance for the sake of generalization, without the risk of
leaving the basin of attraction of the working equilibrium. Restricting adaptation and
inputs appropriately, the proper functioning of the network is guaranteed which we re-
gard as a step towards application of recurrent networks in more critical domains, for
instance in engineering systems, where the costs of misbehavior and reset of the system
can be very high.
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