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Abstract. This paper proposes a mathematical programming frame-
w ork for combining SVMs with possibly di�erent kernels. Compared to
single SVMs, the advantage of this approach is tw ofold: it creates SVMs
with local domains of expertise leading to local enlargements of the mar-
gin, and it allows the use of simple linear kernels combined with a �xed
boolean operation that is particularly well suited for building dedicated
hardware.

1. Introduction

A challenging problem in machine learning is how to use a restricted amount of
training data for constructing classi�ers that generalize well in high-dimensional
spaces [15]. Suc h a classi�er in the linearly separable case is the so-calledopti-
mal hyperplane that provides the largest distance ormargin from the separating
hyperplane to the closest training vector. The basic idea behind the Support
V ectorMachines (SVMs) is �rst to transform the original data on toa high-
dimensional space by using some �xed a priori mapping, and then �nd the
optimal hyperplane in this feature space [4, 6]. The mapping onto the feature
space is obtained using a given kernel representation of the inner product [1].
SVMs have sho wn remarkable generalization performance. How ever, one of
their biggest limitations lies in the choice of the kernel. P ossible ways to over-
come this drawback would be to combine several SVMs with di�erent kernels
by using averaging techniques suc h as bagging [5] or boosting [8]. How ever,
existing averaging methods are based on random modi�cations of the training
set and, thus, are ine�cient for stable classi�ers suc h as SVMs for which a
small change in the training set does not necessarily lead to a large change in
the classi�er. In this paper, we propose a mathematical programming frame-
w ork for combining SVMs with possibly di�erent kernels. The SVMs compete
during training so that each SVM focuses on a particular subset of the data.

2. Classi�er architecture

Let us consider a training set of n labelled observations (xi; yi), i = 1 � � �n,
where xi 2 Rd and yi 2 f�1;+1g. The basic idea behind the Support Vector
Machines is to use some non-linear function � for mapping the input space
onto a feature spaceso that the training set (�(xi); yi), i = 1 � � �n, becomes
linearly separable. In this feature space, there exists a weight vector w and
a bias b such that yi = sgn(w:�(xi) + b) for all i, where sgn (a) = +1 if
a � 0 and �1 otherwise. The optimal separating hyperplane is the one that
maximizes the margin 2=jjwjj or, equivalen tly, minimizes the norm ofw subject
to the constraint that yi(w:�(xi) + b) � 1 for all i (see e.g. [15]). Instead of
ha ving a unique �xed a priori function � for mapping the entire data set, let
us consider several non-linear functions �k, with k = 1 � � � p. The outputs
yki = sgn(wk:�k(xi)+ bk) of the p 'units' represent the internal representation
of the input pattern xi. The class label yi = �1 is obtained by decoding
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the binary string (y1i � � � ypi) with some �xed boolean operation. A case of
interest is the parit y functionthat outputs +1 if the number of positiv ebits
is odd and -1 otherwise. The resulting classi�er, called the parit ymachine,
can exactly separate any arbitrary dichotomy with a bounded number of units
[10]. How ev er, it is v ery noise sensitive since a change of any bit in the internal
representation will switc hthe output. A more robust decoding rule is the
majority vote that gives +1 if the number of positive bits exceeds the number
of negative bits and -1 otherwise. The classi�er known in the literature as a
committee machine [12] can be written as f(xi) = sgn(

Pp

k=1 yki ).

3. Training { primal formulation

T rainingthe committee machine consists of maximizing the margin for eac h
unit, leading to the following optimization problem for all patterns i = 1 � � �n
and units k = 1 � � � p

min
wk;bk;yki

1

2

pX
k=1

jjwkjj
2 s.t. yki(wk :�k(xi) + bk) � 1 and yi = f(xi) (1)

where yki = �1 is the unknown desired output (in ternal representation) for
the ith input pattern and the kth unit. Finding the optimal ykis is a di�cult
combinatorial credit assignment problem. A heuristic procedure, named least
action, has been previously proposed for solving the credit assignment problem
arising both in a committee machine [12 ] and in a parit ymachine [11]. In-
stead of optimizing the ykis directly , the least action algorithm considers that
yki = yi for each unit k but determines which units are used for which subset of
the training data. It pro vides a way of determining which of the units k should
be regarded as responsable for generating the error when the response of the
classi�er is incorrect. Those units constitute a pool of candidate units in the
sense that changing their response from �1 to +1 or vice versa tends to correct
the overall output. For the parit y machine, a change in any unit will switc h
the output f(xi) so that all the units are candidate units. On the contrary,
for the committee machine, only the units that give a response di�erent to yi
are candidate units. The least action algorithm calls for the adjustment of the
minimum number of candidate units to ensure a correct overall response f(xi)
and changes those for which the smallest perturbation of yki(wk:�k(xi) + bk)
is required to alter their output. Let �ki � 0 be the perturbation required for
switc hing the output of unitk in the presence of input pattern xi. These per-
turbations can be introduced into the optimization problem as slack variables
indicating how much the constraints are violated. Then, (1) becomes

min
1

2

pX
k=1

jjwkjj
2 + C

nX
i=1

�i s.t. yi(wk:�k(xi) + bk) � 1� �ki , �ki � 0 (2)

in which C is a parameter to be chosen by the user, a larger value corresponding
to assigning a higher penalty to the errors �i. F or an input patternxi, the error
�i is de�ned as the smallest sum of perturbations required to ensure a correct
overall output. For instance, a pattern xi is well classi�ed by a committee
machine composed of p = 3 units if at least two units have responses equal to
yi so that the error �i is

�i = min f (�1i + �2i); (�1i + �3i); (�2i + �3i) g (3)
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4. Training { dual formulation

In order to use kernels, as it is the case for SVMs, we now consider the dual
formulation of (2). F or the sake of clarit y, we just consider a particular case of
a committee machine composed of p = 3 units. Note how ev er that the results
obtained easily extend to committee machines with an arbitrary number of
units. In order to obtain a form amenable to a simple dual formulation, w e
rewrite the minimum error function as in [2, 3] and (3) now becomes

�i = �1i(�1i + �2i) + �2i(�1i + �3i) + �3i(�2i + �3i) (4)

with (�1i; �2i; �3i) =

(
(1; 0; 0) when (�1i + �2i) is minimum
(0; 1; 0) when (�1i + �3i) is minimum
(0; 0; 1) when (�2i + �3i) is minimum

(5)

F or �xed (�1i; �2i; �3i), the solution of the optimization problem (2)-(4) is given
by the saddle point of the Lagrangian

LP =
1

2

p=3X
k=1

jjwkjj
2 + C

nX
i=1

f�1i(�1i + �2i) + �2i(�1i + �3i) + �3i(�2i + �3i)g

�

p=3X
k=1

nX
i=1

�kifyi(wk:�k(xi) + bk)� 1 + �kig �

p=3X
k=1

nX
i=1

rki�ki (6)

where the �ki are the Lagrange multipliers taking into account the inequality
constraints in (2) and the rki � 0 are the Lagrange multipliers introduced to
enforce positivity of the �ki. At the saddle point, the solution should satisfy
the Karush-Kuhn-Tucker (KKT) conditions

@LP =@wk = 0 ) wk =
X
i

�kiyi�k(xi) (7)

@LP =@bk = 0 )
X
i

�kiyi = 0 (8)

@LP =@�1i = C(�1i + �2i)� �1i � r1i = 0

@LP =@�2i = C(�1i + �3i)� �2i � r2i = 0 (9)

@LP =@�3i = C(�2i + �3i)� �3i � r3i = 0

As for SVMs, the optimal hyperplanes given b y (7) are linear combinations of
the v ectors of the training set transformed by the mapping �k. Those vectors
xi, for which �ki are nonzero, are called support vectors for wk. Replacing
expressions of wk in (6), and taking into account the other KKT conditions
(8)-(9), one obtains

LD =

pX
k=1

nX
i=1

�ki �
1

2

pX
k=1

nX
i;j=1

�ki �kj yi yj (�k(xi):�k(xj))

Note that LD only requires the evaluation of dot products which can be replaced
by simple kernels Kk(xi;xj) = (�k(xi):�k(xj)). The optimization problem
then becomes

max
�ki

pX
k=1

nX
i=1

�ki �
1

2

pX
k=1

nX
i;j=1

�ki �kj yi yj Kk(xi;xj) (10)
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subject to (8) and the following constraints

0 � �1i � C(�1i + �2i); 0 � �2i � C(�1i + �3i); 0 � �3i � C(�2i + �3i) (11)

resulting from (9) and the fact that rki � 0. Assume that for a given input
xi, (�1i; �2i; �3i) = (1; 0; 0) from (5). The constraints (11) then become 0 �
�1i; �2i � C and �3i = 0 meaning that the training data pair (xi; yi) is assigned
to units 1 and 2 but not to unit 3. F or the con�gurations (�1i; �2i; �3i) =
(0; 1; 0) and (0; 0; 1), the training data pair is assigned to units (1; 3) and (2; 3),
respectively. Hence, during training, the di�erent SVMs compete for data so
that each SVM focuses on a particular subset of the training data.

5. Practical algorithm and illustrative examples

Similarly to the support vector decision tree algorithm proposed in [3], we pro-
pose a simple descent algorithm which alternates betw een the primal and dual
formulations until a local minimum is reached. The support vector committee
machine algorithm iterates betw een the following two steps

1) solv e the dual quadratic problem (10) subject to (8) and (11) for �xed
�ki.

2) compute the �ki from the constraints yi(wk:�k(xi)+ bk) � 1��ki of the
primal problem (2) and the �ki from (5).

until there is no change in the �kis (these were initialized randomly in the
simulations below). Any kernel that a single SVM could ha vecan be used,
e.g. linear, polynomial (xi:xj + 1)dk or RBF exp(�
kjjxi � xj jj

2). P olyno-
mial kernels allo w us to incorporate the Structural Risk Minimization prin-
ciple into the support vector committee machine algorithm by increasing the
order dk of unit k that both makes large training errors and has a low V C
dimension hk � R2

kjjwkjj
2 (with Rk being the radius of the minimum enclos-

ing sphere [14] estimated on the subset of training data that has been as-
signed to unit k). Our program was written in C and uses a dual-active-set
quadratic programming method originating from [9], implemented in [13], and
available at h ttp://www.isr.umd.edu/Labs/CACSE/FSQP/qld.c. We experi-
mentally found this implementation both more e�cient and numerically stable
than the interior point quadratic solver available at http://svm.�rst.gmd.de.

Figure 1 shows the discriminant surface obtained with a support vector com-
mittee machine on the 2-bit parity discrimination problem. One of the advan-
tages of the committee machine is the possibility of using simple linear kernels
(see Fig. 1 left). Another solution, albeit equally e�ective, is obtained on
this problem if the parit ydecoding rule is used instead of the majority (see
Fig. 1 right). Changing the decoding rule only modi�es the error term �i of
the primal problem and, consequently, the constraints (11) of the dual problem.

Figure 2 compares the discriminant surface obtained with a single SVM to the
one obtained with a support vector committee machine on the Fisher Iris data
discrimination problem [7]. The problem is linearly and non-linearly separable
into the left and right region of the input space, respectively. The margin
obtained with a unique kernel is in�nitely small in the zero error case (C =1),
see Fig. 2A. The only w ayto enlarge the margin in the linearly separable
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region is to tolerate errors in the non-linearly separable region by decreasing
C, as indicated in Fig. 2B. On the contrary , the support vector committee
machine allows us to enlarge the margin locally in the linearly separable region
and still having all the training patterns correctly classi�ed (see Fig. 2C). This
is due to the fact that the di�erent units of the committee competed for data
during training so that each unit focused on a particular subset of the training
data corresponding to the linearly and non-linearly regions of the input space.
The VC argument described above was used to select the appropriate degrees
for the polynomial kernels. The committee machine, depicted in Fig. 2D, has
two linear kernels and yields an error probability, estimated at 0:087 by leaving
one out, which is low er than the 0:15 and 0:10 error probability obtained with
a single RBF kernel SVM and C = 1 and 100, respectively. The solution
obtained depends upon the initialization since the support vector committee
machine algorithm stops at the �rst local minimum encountered. Although it
is not garanteed to �nd the optimum solution in every case, the con�guration
depicted in Fig. 2D w asobtained in more than 80% of the 500 simulations
performed with random starting point. The number of iterations was 3:66 on
average.

←

→

←

→

←

↓

Figure 1: 2-bit parit y discrimination problem.White data points have targets �1
and black data points ha ve targets +1.The discriminant surfaces on the left and on
the righ t ha ve been obtained usingsupport vector committee and parity machines
with linear kernels, respectiv ely. The discriminant surface in the middle is for a
supportv ector committee machine with a linear kernel coupled with a polynomial
kernel. Arro ws indicate the positive sides of the elementary discriminants.

A

C

B

D

Figure 2: The Fisher Iris data dis-
crimination problem represented on
the �rst tw o principal component
axes. White data points (target �1)
are from the classes setosa and vir-
ginica. Black data points (target +1)
are from the class versicolor. The dis-
criminant surface is indicated with
a full curv e while the classi�cation
margin is delimited by the dashed
curv es. Note that full and dashed
curv es may be superimposed for mar-
gins of very small sizes. Figs A and B
are for a single SVM having a RBF
kernel (
 = 1) and optimized with
C =1 and 100, respectively. Figs C
and D are for a support vector com-
mittee machine optimized with tw o
kernels and C =1. The kernels are
di�erent (linear and RBF) and iden-
tical (linear) in �gure C and D, re-
spectiv ely.
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6. Conclusion

In this paper, we presented a mathematical programming framework for com-
bining SVMs with possibly di�erent kernels. Compared to single SVMs, the
adv antage of this approach is tw ofold: it creates SVMs with local domains of
expertise leading to local enlargements of the margin, and it allows the use
of simple linear kernels combined with a �xed boolean operation (e.g. major-
ity) that is particularly well suited for building dedicated VLSI circuits. Our
approach can be related to the least action algorithm [11, 12] and to the sup-
port vector decision tree algorithm proposed in [2, 3]. During training, eac h
SVM competes for data so as to focus on a particular subset of the training
data. How ev er, the solution obtained depends upon the initialization since the
proposed algorithm stops at the �rst local minimum encountered. For initial-
izing the algorithm better than randomly, w e are investigating several lines of
researc h including the use of unsupervised clustering techniques or the possi-
bilit y of exploiting prior knowledge about the classi�cation task to be learned.
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