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Abstract. In least squares support vector machine (LS-SVM) classi-
�ers the original SVM formulation of Vapnik is modi�ed by considering
equalit y constraints within a form of ridge regression instead of inequal-
ity constraints. As a result the solution follows from solving a set of
linear equations instead of a quadratic programming problem. Ho wever,
a drawback is that sparseness is lost in the LS-SVM case due to the choice
of 2-norms. In this paper we propose a method for imposing sparseness
to the LS-SVM solution. This is done by pruning the support value
spectrum which is rev ealing the relative importance of the training data
points and is immediately available as solution to the linear systems.

Keywords. Support vector machines, classi�cation, ridge regression, dual
problem, sparse approximation, pruning.

1. Introduction

Support vector machines (SVM's) have been successfully applied in classi�ca-
tion and function estimation problems [2, 8] after its in troduction by Vapnik
within the context of statistical learning theory and structural risk minimiza-
tion [13]. The SVM classi�er typically follows from the solution to a quadratic
programming (QP) problem. Several types of kernels can be used within SVM's
such as linear, polynomial, splines, radial basis functions (RBF) and one hid-
den layer multila yer perceptrons (MLP). The kernel based SVM representation
is motivated by the Mercer condition. Normally, many of the support values
which are the solution to the QP problem will be equal to zero. The non-zero
values are related to support vector data and are contributing to the construc-
tion of the classi�er.

This research work w as carried out at the ESAT laboratory and the Interdisciplinary
Center of Neural Netw orks ICNN of the Katholieke Universiteit Leuv en, in the framework of
the FWO project G.0262.97 Learning and Optimization: an Interdisciplinary Approach, the
Belgian Programme on Interuniv ersity Poles of A ttraction, initiated by the Belgian State,
Prime Minister's O�ce for Science, Technology and Culture (IUAP P4-02 & IUAP P4-24),
the Concerted Action Project MIPS (Mo delbasedInformation Pr ocessing Systems) of the
Flemish Community. Johan Suykens is a postdoctoral researc her with the National Fund for
Scien ti�c Research FWO - Flanders.
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A modi�ed version of SVM classi�ers in a least squares sense has been
proposed in [10]. In this case the solution is given b y a linear system instead of
a QP problem. T aking into account the fact that the computational complexity
strongly increases with the number of training data least squares support vector
machines (LS-SVM's) can be e�ciently estimated using iterative methods [4,
11]. A straigh tforward extension of LS-SVM's to the multiclass problem has
been made in [12]. Related w orkon ridge regression type SVM's is [7] (but
without considering a bias term, which has serious implications concerning
algorithms) [2].

A drawback of LS-SVM's on the other hand is that sparseness is lost due to
the form of ridge regression. This is important in the context of an equivalence
betw een sparse approximation and support vector machines [3]. Now, inthis
paper we demonstrate how sparseness can be imposed by pruning the support
value spectrum. The sorted support values are indeed available as solution to
the linear system. The support values reveal the relativ e importance ofeac h
of the training data points. In the case of RBF kernels a small support value
indicates that this point can be omitted from the training set which is equivalent
then to removing the hidden unit which corresponds to this data point. While
pruning of classical neural net w orksinvolv esthe computation of an inverse
Hessian matrix [1, 5, 6], the LS-SVM pruning can be done immediately based
upon the support value spectrum. The pruning method could be potentially
improved based upon the insights of [9].

This paper is organized as follows. In Section 2 we discuss LS-SVM's. In
Section 3 w epresent the pruning method in order to impose sparseness. In
Section 4 an illustrative example is given.

2. Least Squares SVM Classi�ers

Given a training set fxk; ykg
N
k=1 with input patterns xk 2 R

n and output
values yk 2 f�1;+1g indicating the class, SVM formulations [13 ] start from
the assumption that�

wT'(xk) + b � +1 ; if yk = +1
wT'(xk) + b � �1 ; if yk = �1

(1)

which is equivalent to yk[w
T'(xk) + b] � 1 (k = 1; :::; N): Here the nonlinear

mapping '(�) maps the input data into a so-called higher dimensional feature
space. In LS-SVM's [10] an equality constraint based formulation is made
within the context of ridge regression [4] as follows

min
w;e

J (w; e) =
1

2
wTw+


1

2

NX
k=1

e2k s:t yk[w
T'(xk)+b] = 1�ek ; k = 1; N (2)

with Lagrangian

L(w; b; e;�) = J (w; e) �

NX
k=1

�kfyk[w
T'(xk) + b]� 1 + ekg (3)
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and Lagrange multipliers (support values) �k. The conditions for optimality

@L=@w = 0, @L=@b = 0, @L=@ek = 0, @L=@�k = 0 give w =
PN

k=1 �kyk'(xk),PN

k=1 �kyk = 0, �k = 
ek, yk[w
T'(xk) + b] = 1 � ek(k = 1; N), respectively.

By eliminating e; w one obtains the KKT system�
0 Y T

Y 
+ 
�1I

� �
b
�

�
=

�
0
~1

�
(4)

where Y = [y1; :::; yN ], ~1 = [1; :::; 1], � = [�1; :::;�N ] and


kl = ykyl '(xk)
T'(xl); k; l = 1; :::; N

= ykyl	(xk; xl)
(5)

after application of the Mercer condition. This �nally results into the following
LS-SVM classi�er

y(x) = sign[
NX
k=1

�kyk 	(x; xk) + b] (6)

where �; b are the solution to (4). For the choice of the kernel function 	(�; �)
one has several possibilities including the RBF kernel 	(x; xk) = expf�kx �
xkk

2

2
=�2g. Note that �; 
 are to be considered as additional tuning parameters

for the LS-SVM which do not follow as a solution to the linear system.

3. Imposing Sparseness by Pruning

A drawback of the LS-SVM classi�er in comparison with the original SVM for-
mulation is that sparseness is lost in the LS case. This immediately follows from
the c hoice of the 2-norm and is also revealed by the fact that the support values
are proportional to the errors at the data points, namely �k = 
ek. How ever,
by plotting the spectrum of the sorted j�kj values one can evaluate which data
are most signi�cant for con tributionto the LS-SVM classi�er. Sparseness is
imposed then by gradually omitting the least important data from the training
set and re-estimating the LS-SVM (Fig.1):

1. T rain LS-SVM based onN points.

2. Remove a small amount of points (e.g. 5% of the set) with smallest values
in the sorted j�kj spectrum.

3. Re-train the LS-SVM based on the reduced training set.

4. Go to 2, unless the user-de�ned performance index degrades.

This procedure corresponds to pruning of the LS-SVM. An advan tage in com-
parison with pruning for classical neural netw orktechniques [1, 6, 5] is that
no w the pruning does not involv ea computation of a Hessian matrix but is
immediately done based upon the ph ysical meaning of thesolution vector �.
In this paper we do not discuss the important issue of selecting the value of 

and � [13 ,?, 14, 8] for RBF kernels in the context of this pruning procedure.
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4. Example

We give an illustrative example for the LS-SVM pruning procedure. T raining
data (N = 500) are generated from Gaussian distributions (250 points for each
class) with centra �1 = [�0:5;�0:5], �2 = [0:5; 0:5] (small overlap) (Fig.2) and
cen tra�1 = [�0:3;�0:3], �2 = [0:3; 0:3] (larger overlap) (Fig.4) with covariance
matrices �1 = �2 = 0:25I in both cases. Fig.3 is similar to thecase of Fig.2
but with a modi�cation of 10 misclassi�cations in the data. Assuming equal
prior probabilities for the tw oclasses the optimal decision boundary in the
sense of Bayes rule is given by a straigh tline [1] shown on the Figs. In all
simulations w eemploy a RBF kernel with � = 3; 
 = 10 in Fig.2; 
 = 1
in Fig.3-4 (more emphasis on regularization term kwk). The sorted spectrum
is gradually pruned by leaving out 5% of the training data which are least
signi�cant according to the SV spectrum. The number of hidden units can
be reduced from 500 to at least 100 without loss of performance in Fig.2-3.
Snapshots of the shifted SV spectrum are shown for 250 and 100 SV's (only
support vectors are shown on Figs). One observes that SV's are both near and
far from the decision line which is di�erent from standard SVM classi�ers. F or
the case of a larger overlap (Fig.4) betw een the distributions, less SV's can be
pruned.

5. Conclusions

We proposed a pruning method for achieving sparse least squares SVM classi-
�ers. Pruning is done based upon the support value spectrum. Examples for
RBF kernels illustrate how a signi�cant amount of hidden units, i.e. support
vectors can be reduced without loss of performance in the case of small and
large o verlap of the underlying distributions and misclassi�ed data.
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Fig.1: Pruning of the LS-SVM spectrum.
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Fig.2: Pruning of LS-SVM classi�er with RBF kernel: separable
case. (T op-Left)N = 500 data; (Top-Right) 250 SV's; (Bottom-
Left) 100 SV's; (Bottom-Right) Pruned SV spectrum.
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Fig.3: Pruning of LS-SVM classi�er: data set with misclassi�cations

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

k

ab
s(

al
ph

a k)

Fig.4: Pruning of LS-SVM classi�er: case of a larger overlap be-
tw een the underlying Gaussian distributions.
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