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Abstract. The paper deals with continuously operating optimization
neural netw orks with lossy dynamics.As the main feature of the neural
model time-varying nature of neuron activation functions is introduced.
The model presented is general in the sense that it covers the cases of neu-
ral net w orks for combinatorial optimization (Hop�eld-like netw orks) and
neural models for optimization problems with continuous decision vari-
ables. Besides the brief stability analysis of the proposed neural netw ork
we also sho w how to derive from it lossy versions of improved Hop�eld
neural models .

1. Introduction

In the last decade considerable attention has been paid for optimization neural
net w orks.Suc h systems are considered as potentially eÆcient hardware solu-
tions for large-scale or hard optimization problems [1], [2]. Although many
problematic, and therefore challenging question arises in connection with the
hardware realization, an optimization neural netw ork could work v ery fast as
a parallel computational structure in a truly distributed implementation.

One of the �rst pioneers in this �eld were Hop�eld and Tank who presented
a 'neural like' netw ork forsolving combinatorial problems [1]. This network,
since then always referred to as Hop�eld neural netw ork (HNN)is a continu-
ously operating model being very close to analog circuit implementation. Since
1985 a wide variet yof Hop�eld-like neural netw orksha vebeen designed for
improving the performance of the original model, i.e. for avoiding local optima
or spurious states with high probability. (The term \local optima" stands for
locally optimal stable equilibrium points). Besides the continuously operating
net w orks which �t to analog circuit realizations [3], [4], [5] discrete versions be-
ing more suitable for computer implementations [2], have been also developed.
In the paper, we concentrate on the continuous models of which operation can
be described by di�erential equations with special regard to lossy dynamics.
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The adjective lossy means in this context that the time derivativ es of the
state variables in the netw orkare proportional not with the gradient of the
objective function, but the gradient plus the corresponding state variable itself.
In a circuit realization, it means that the in tegrators are leaky, that is their
input resistances are not in�nitely large, which is doubtless a better model
of real circuits. This lossy property implies the drawback that the energy
function and the objective function don't match eac h other. The di�erence
can be arbitrarily small with arbitrarily steep activ ationfunction at decision
neurons.

In the original Hop�eld net w orkthe analog dynamics is lossy and some
other papers also discussed the dra wback of lossy dynamics. In this paper,
we reintroduce lossy dynamics for a broader class of optimization neural nets
and show how to utilize the lossy property for improving netw ork performance
provided time-variation of activation function is allow ed.

2. The optimization neural network model

For easy reference let's call the neural model to be introduced TONN standing
for time-varying optimization neural netw ork.One of the main characteristics
of TONN is that it is a continuously operating system seeking for a local
minimizer of an unconstrained objective function in a gradient manner. It
means that the operation can be described by the following set of di�erential
equations.

dzk
dt

= �Gkzk �
@E(x)

@xk
; k = 1; : : : ; n (1)

where Gk are positive constants, the n dimensional vector x comprises the de-
cision variables and zk's are inner state variables. The unconstrained objective
function to be optimized is denoted by E(x). The decision variables xk are
obtained by

xk = �k(zk=Tk(t)) (2)

where functions �k(:) are sigmoid-like functions with �nite positive and nega-
tive saturations, that is �k(1) = Xkmax > 0 and �k(�1) = Xkmin < 0. A
further assumption is that �(0) = 0. For example, a widely used activ ation
function in neural netw ork world is�( :) = tanh. The steepness of �k(:) can
be controlled by �nite Tk(t) which is allo w edto vary in time in TONN in
such ways that Tk(t) can be strictly monotone increasing or strictly monotone
decreasing or constant in time and limt!1 Tk(t) = T̂k � 0).

If E(x) is an objective function with discrete decision variables (xk should be
0; 1 or �1; 1) then TONN can be used for solving combinatorial optimization
problems. Otherwise, if E(x) is derived from an optimization problem with
continuous decision variables (xk's can take any values in a certain range) then
TONN can be attached to the group of nonlinear (or linear) programming
neural netw orks.
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Before investigating the stability properties of TONN , let's brie
y consider
the lossless dynamics neural net w ork basedon gradient searc h. In this case,
all Gk's are zero and the quali�ed Ly apunov function of this system is E(x)
provided it is bounded from below. A simple but very important observation
is that the steepness of �k does not a�ect the objective function of which the
local minimizer is retrieved b y the netw ork. F urther, the time-varying nature
of Tk(t) even does not in
uence the Lyapunov function E(x). In spite of this
fact in many cases the performance can rely on gradually increasing steepness
of the activation function, for example, in case of HANN [3].

In connection with lossy dynamics we encounter the problem that the orig-
inal objective function to be optimized and the Lyapunov function which is
really minimized by the netw ork do not match each other. For a moment let
us consider a lossy system which can be described by a similar equation to (1)
but with the di�erence that Tk(t)'s are constants in time like in the original
neural model of Hop�eld and Tank [1]. Then the Lyapunov function of suc h
systems is as follows.

L(x) = E(x) +

nX
k=1

TkGk

Z xk

0

��1(�)d� (3)

A minor but important observation, which will be also referred later (in Sec-
tion 3.1.2.) in connection with the relations between TONN and other neural
systems, is that parameters Tk and Gk pla y the same role in the Lyapunov
function.

As regards TONN the questions arise that whether the netw ork remains
stable, and if yes, what is the function which is minimized by TONN . The
follo wing theorem sheds light on the results in connection with these problems.

Theorem 1 If E(x) is bounded from below and the function

Hk(xk) =

Z xk

0

��1(�)d�

is bounded on the set fXkmin � xk � Xkmaxg, 8k then TONN is asymptoti-

cally stable in Lyapunov sense and converges to a local minimizer of the function

E(x) +
nX

k=1

T̂kGk

Z xk

0

��1(�)d�

where T̂k, k = 1; : : : ; n are the limit values of Tk(t)'s.

Proof: see [6]
Remarks:

The boundedness of Hk(xk) is reasonable for the follo wing reasons. F or
example, if �k(zk; Tk(t)) = tanh(zk=Tk(t)) then Xkmax = �Xkmin = 1 and

Hk(1) =

Z 1

0

tanh�1 �d�
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can be described as an improprius in tegral limz!1(z tanh z �
R z
0
tanh �d�)

which is equal to limz!1(z tanh z � ln(cosh z)) Since tanh z tends to 1 and
cosh z converges to ez=2 as z ! 1 the limit abo veis ln 2. Consequently,
supxk2Xk Hk(xk) = ln 2 and therefore Ĥk can be ln 2 + " where " is an y small
positive number.

It can be seen that in the Lyapunov function of TONN Tk(t) and Gk are
similarly the weigh ts of the additional terms. It implies that their role may be
exc hanged, that is Gk can be time varying and Tk can be constant (if it w as
not constant) without changing the objective function.

If the time-varying Tk(t) tends to zero then the netw ork �nally converges
to a minimizer of E(x). This issue is acceptable in case of Hop�eld-like net-
w orks (nonlinearities becamehard limiters) but shouldn't be concerned with
optimization neural nets producing continuous decision variables.

3. Relations to other optimization neural net-

works

In this section we discuss what is the relation between TONN and Hop�eld-like
optimization neural netw ork models.

Combinatorial optimization neural netw orks lik e the Hop�eld model is es-
sentially based on the gradient descent seeking for an optimum of the objective
function. In case of the Hop�eld neural netw ork the energy function that should
be minimized can be given by a general quadratic from

E =
1

2
xtWx+ btx (4)

where x comprises the decision variables xk, xk = 1 or �1. (No matter to
transform it such that xk = 1 or 0). W is an n� n symmetric matrix and b is
an n dimensional input vector. The operation of a lossless dynamics netw ork
can be described by

dzk
dt

= �
@E(x)

@xk
; xk = tanh(zk=T ) ; k = 1::n (5)

where T is a positiv econstant. In fact, this net w orkperforms a continuous
relaxation of the discrete optimization problem, therefore, xk should bedigi-
tized after the convergence. A lossy version of the network above (in fact the
original Hop�eld model was presented as a lossy system) can be obtained from
TONN if Tk(t) are positive constants in time and �k = tanh, 8k. The main
drawbacks of these models that the equilibrium state represents only a local
minimizer of E(x) or some of xk 's do not satisfactorily converge to wards 1 or
�1.

3.1. Hardware annealing neural network

In hardware annealing neural netw ork(HANN) the scalar T is designed to
be time-varying insuc h a way that the steepness of the sigmoid activation is
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gradually increasing in time. It resulted in a similar e�ect to that of simulated
annealing (SA), thus, providing better chance to avoid local optima [3]. In this
case, the governing equations are similar to (5) except that T is decreasing in
time.

In [3] the operation of the netw orkis modeled by lossless dynamics like
(5). The better performance relies on the time-varying nature of the activation
function. Moreover, theHANN minimizes an energy function in the form of
E(x), therefore, the better performance can not analytically be caught through
the Lyapunov function.

A lossy version ofHANN can be derived from TONN in a way that �k(:) =
tanh(:) and all Tk(t)'s are identical and strictly monotone decreasing functions
of time tending to 0. HANN with lossy dynamics is certainly a better approach
of real circuit behaviours. The netw ork remains stable according to Theorem 1
and the Lyapunov function L(x) makes clear that why the neural netw ork has
chance to avoid local optima. T o support this latter statement let's consider the
Ly apunov function in (3). The additional term besides E(x) is convex because
Hk is strictly monotone increasing function. Generally, if an appropriate convex
function is added to a function to be optimized, then some of the local optima
of the objective function can be eliminated at the expense of changing the
minimizers including the global one. How ever, in this modi�ed HANN the
additional convex term is gradually disappearing as T is approaching to 0.
If this process is slow enough the netw ork output may trac k the time-varying
global optimum �nally converging probably to the best minimizer of the original
objective function. A t the same time the steepness of � is increasing, in this
w ay,the decision variables are really forced tending to �1 or 1. A similar
phenomenon can be observed in simulated annealing regarding the objective
function and the probability density function of states.

3.2. Matrix graduated neural network

In [4] a neural netw orkis proposed with time-varying main diagonal en tries
of W . wii's start from positiv evalues and are decreasing in time in a dis-

crete manner. The netw orkis based on the matrix graduated nonconvexit y
(MGNC) algorithm, therefore, hereafter w e refer to this neural system as
matrix graduated neural netw ork(MGNN). In this model, the activ ation
function is constant in time and piece-wise linear. It is sho wnthat the net-
w orkcan produce better optimum than that of the original Hop�eld model,
for instance, in solving the traveling salesman problem. The dynamics of
MGNN is lossless and the activation function is piece-wise linear, that is
xk = �MGNN (zk) = zk if jzkj � 1 ; otherwise xk = sign(zk).

Now, we sho w ho to derive a lossy version of MGNN from TONN . Ob-
viously, w eshould choose �k as �MGNN de�ned abo ve. The role of Tk(t)
and Gk should also be exchanged so that Tk = 1;8k (due to the de�nition
of �MGNN ) and Gk(t) are time-varying with the properties of _Gk(t) < 0,
Gk(t)! 0 and _Gk(t)! 0 as t!1. In this case H(xk) = x2k=2, therefore, the
quali�ed Lyapunov function of the system is L(t) = E(x) + 1

2

P
k TkGk(t)x

2
k =
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1
2

P
i;j;i6=j wijxixj +

1
2

P
k

�
wkk + TkGk(t)

�
x2k. It evidently implies that the

main diagonal elements of Ŵ ŵkk = wkk + 1=2TkGk(t) are decreasing in
time while the shape of activation function doesn't change, that is we have an
MGNN -like netw orkwith lossy dynamics and continuously decreasing main
diagonal en tries. This results has tw o-foldsigni�cance because besides tak-
ing into account nonideal integrators through lossy dynamics the continuous
ev olution of ŵkk(t) in time may provide fully analog implementation.

Conclusion

A time-varying optimization neural net w orkmodel with lossy dynamics re-
ferred to as TONN w as in troduced.The non-trivial stabilit y properties was
presented. It w asalso shown ho w to derive from TONN lossy versions of
kno wn Hop�eld-like neural networks with improved performance.
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