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Abstract: Recurrent neural networks possess interesting universal 
approximation capabilities, making them good candidates for time series 
modeling. Unfortunately, long term dependencies are difficult to learn if 
gradient descent algorithms are employed. We support the view that it is easier 
for these algorithms to find good solutions if one includes connections with time 
delays in the recurrent networks. The algorithm we present here allows one to 
choose the right locations and delays for such connections. As we show on two 
benchmark problems, this algorithm produces very good results while keeping 
the total number of connections in the recurrent network to a minimum. 

1. Introduction 

Time series processing has important applications in various domains such as 
medicine, ecology, meteorology, industrial control or finance. The most common 
approach to modeling is to consider a fixed number of the past values of one or 
several time series (i.e. a time window of fixed size) and look for a function which 
provides the next value of the target series (regression) or the class membership of the 
input sequence (classification). In univariate regression, for instance, one is searching 
for the function f  which gives the best estimate of the future value of the time series 

according to ( )ptttt xxxfx −−−= �,,ˆ 21 , p  being the size of the time window. 

Multilayer perceptrons (MLP, [1]) are well adapted to this approach: one is 
simply using a network having an input layer of size p , several neurons with 

sigmoidal activation functions in the hidden layer, and a single output neuron which is 
usually linear. Universal approximation results for feed-forward neural networks 
show that very general nonlinear autoregressive functions wf  can be obtained; these 

functions depend on the weights in the network. Replacing simple connections by 
finite impulse response (FIR) connections produces composite nonlinear 
autoregressive models which give better results on several reference benchmarks [2]. 

However, this approach is unable to model well the behavior of many 
dynamical systems and is often limited by the presence of a time window of fixed 
size. Indeed, if the time window is too narrow, important cues may fall aside. If the 
window is too wide, useless inputs may act as noise. Ideally, the size of the window 
should adapt to the context, but it is difficult for an MLP to implement this feature. 
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Recurrent neural networks (RNN) possess an internal memory and do no 
longer need a time window to take into account the past values of the time series. 
RNNs prove to be significantly more powerful than feed-forward networks, for 
regression [3] or classification [4] problems. Unfortunately, the gradient descent 
algorithms which are commonly used for training RNNs [1], [5] have several 
limitations, the most important one being the difficulty of dealing with long-term 
dependencies in the time series [6]. Adding connections with time delays to the RNN 
[7], [8] often allows gradient descent algorithms to find better solutions in these cases. 
Indeed, by acting as a linear link between two distant moments, such a connection has 
beneficial effects on the expression of the gradient. 

But in the absence of prior knowledge concerning the problem to solve, how 
can one choose the locations and the delays associated to these new connections? By 
systematically adding FIR connections, each encompassing a whole range of delays, 
one obtains oversized networks which are slow to train and have poor generalization 
abilities. Various regularization techniques are then employed in order to improve 
generalization [9], [10], and this further increases the computational cost. 

2. A constructive algorithm for time-delayed connections 

We opted here for the alternative, constructive approach: start with a RNN having no 
time-delayed connections and progressively add a few such connections. We choose 
the location and the (single) delay associated to a time-delayed connection by 
evaluating the relevance of the potential candidates. The resulting algorithm allows us 
to better account for long-term dependencies by adapting the architecture of the RNN 
to the problem we must solve. 

Let us consider Back Propagation Through Time (BPTT) [1]. When applying 
BPTT on the training set between 1t  and lt , we obtain the following expression for 

the variation of one weight ( )k
ijw  of delay k : 
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( )lttE ,1  being the mean quadratic error and ( )( )τk
ijw  the copy of ( )k

ijw  for τ=t  in the 

unfolded network BPTT employs [1]. If we note by ( )ts j  the output of neuron j  at 

time t , we may write 
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The connection ( )k
ijw  is only useful in capturing long-term dependencies if it has a 

significant contribution to the computation of the gradient, i.e. ( ) ( )( )τk
ijl wttE ∂∂ ,1  is 

significantly non zero for many iterations of the learning algorithm. 
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Our algorithm, Constructive Back Propagation Through Time (CBPTT), 
records during several BPTT steps the correlation between the values of 

( ) ( )τil netttE ∂∂ ,1  and ( )ks j −τ  for [ ]1;1 −+∈ ltktτ . The absolute value of this 

correlation defines the relevance factor for every candidate connection ( )k
ijw . The 

connection having the highest relevance factor is then added to the RNN (its weight is 
initialized to 0) and learning continues. This process usually stops when a new 
connection has no further positive effect on the performance of the network. Note that 
the storage complexity and the time complexity of CBPTT is the same as for BPTT. 

3. Experimental results 

The experimental results we present here concern univariate regression, but CBPTT is 
not limited to such problems. We applied CBPTT to RNN having a single input 
neuron, a single (linear) output neuron, a bias unit and a fully recurrent hidden layer 
composed of neurons with sigmoidal activation functions. For the sunspots dataset we 
tested RNN having 2 to 15 neurons in the hidden layer and for the Mackey-Glass 
dataset 2 to 7 neurons. 20 experiments were performed for every architecture, by 
randomly initializing the weights in [ ]3.0,3.0− . We show the best results we 

obtained for the two benchmarks and compare these results to published ones. 

3.1. Sunspots dataset 

This dataset contains the yearly number of dark spots on the sun from 1700 to 1979. 
The time series has a pseudo-period of 10 to 11 years. Several models were evaluated 
for one step ahead predictions [11], [12], including feed-forward [13] and recurrent 
[14] neural networks. The training set corresponds to the period 1700-1920 and two 
test sets were defined, 1921-1955 (test1) and 1956-1979 (test2). Test2 is considered to 
be more difficult because it has a larger variance. 

Table 1 compares the results obtained by various models applied to this 
benchmark. For every model we give the number of parameters and the normalized 
mean squared error (NMSE). The Threshold AutoRegressive (TAR, [11]) model 
employs a threshold to switch between two autoregressive models. The MLP has a 
time window of size 12 in the input layer and starts with 8 hidden neurons [13]; a 
pruning algorithm reduces the number of hidden neurons to 3. The IIR MLP in [14] 
contains local feedbacks and delays and is obtained by an evolutionary algorithm. 

Model Parameters Learning Test1 Test2 
Carbon Copy - 0.289 0.427 0.966 
TAR  18 0.097 0.097 0.280 
MLP 43 0.082 0.086 0.350 
IIR MLP 23 0.101 0.097 0.436 
RNN with BPTT 155 0.064 0.084 0.300 
RNN with CBPTT 15 0.098 0.092 0.251 

Table 1: Results obtained by various models on the sunspots time series. 
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The results produced with CBPTT are in line with those of the other models on test1, 
but are significantly better on test2. The number of parameters is also very low. The 
best results (see also Figure 1 below) were obtained for RNNs having only 2 neurons 
in the hidden layer. During our experiments we noticed that CBPTT added at most 4 
connections, with delays between 6 and 17. 
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Figure 1: The predictions obtained with CBPTT on the sunspots test sets. 

3.2. Mackey-Glass dataset 

The Mackey-Glass time series [16] are generated by the following nonlinear model: 

( ) ( ) ( )
( )τ

τ
−+

−+−=
tx

tx
tx

dt

tdx
101

2.0
1.0 . 

We consider here 17=τ  (MG17), the value which is usually retained. The time 
series exhibits then a chaotic behavior. The data generated with ( ) 9.0=tx  for 

τ≤≤ t0  is then sampled with a period of 6. We use the first 500 values for the 
learning set and the next 100 values for the test set. 

Table 2 compares the results (NMSE) obtained on the test set by several 
models applied to this benchmark (see [2], [15], [16] for the first 7 models). The FIR 
MLP [2] has 15 neurons in the hidden layer; the FIR connections between the inputs 
and the hidden neurons have an order of 8, and those between the hidden neurons and 
the output an order of 2 (for a total of 196 parameters). In [17] a RNN having 5 
neurons in a fully connected hidden layer is employed. The feed-forward network in 
[18] has a single input, 20 neurons in the hidden layer and one output neuron ; all the 
connections have delays, and the values of the delays are obtained by an algorithm 
which is similar to back-propagation. 

CBPTT gives the best results for the Mackey-Glass dataset with 17=τ . 
These results were obtained for RNN having 7 neurons in the hidden layer and 4 time-
delayed connections, for a total of 81 parameters. During our experiments we noticed 
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that CBPTT added at most 4 connections, and their delays were distributed around the 
following values: 5, 13, 19. Note that we performed similar experiments for 30=τ  
(MG30) and CBPTT produced again the best results. 

Model Results on test set 
Linear 0.269 
Polynomial 1.12410-2 

Rational 7.24410-2 
Local approach 1 3.31410-2 
Local approach 2 1.29410-2 
RBF 1.07410-2 
MLP 10-2 
FIR MLP 4.9410-3 
RNN in [18] 3.1410-3 
TDNN in [19] 8410-4 
RNN with BPTT 2.35410-4 
RNN with CBPTT 1.4410-4 

Table 2: Results obtained by various models on the MG17 time series. 

4. Conclusion 

Adding time-delayed connections to recurrent neural networks helps gradient descent 
algorithms in learning medium or long-term dependencies. However, by 
systematically adding finite impulse response connections, one obtains oversized 
networks which are slow to train and need difficult to control regularization 
techniques in order to improve generalization. 

We opted here for a constructive approach, which starts with a RNN having 
no time-delayed connections and progressively adds a few such connections. We 
defined a heuristic for choosing the location and the (single) delay associated to a 
time-delayed connection. The resulting algorithm has the same computational 
complexity as the well known back-propagation through time. 

The experimental results we obtained on two benchmark problems show that 
by adding only a few time-delayed connections one is able to produce networks 
having comparatively few parameters and good performance. 

Our effort is now directed towards adapting this heuristic to second-order 
gradient based algorithms and defining alternative relevance factors. 
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