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Abstract. This paper describes a novel image registration method for

movement correction of fMR time-series. It is important to align the fMR

images in the time-series before time-dependent analyses. This registra-

tion method aligns the boundaries of brains extracted from the functional

images. It uses a genetic algorithm to minimize the distance function ob-

tained from the chamfer distance transform. The global search nature

of genetic algorithm makes this method robust to the presence of local

minima.

1. Introduction

Movement correction of brain images obtained at di�erent time instances of an
fMR head time-series of scans is essential for the analyses of time-dependent
changes. Despite the restraints to inhibit head movement, subjects could still
show sligh t displacement in the scanner. If these motion artifacts are not
corrected in the time-series analysis, the detected activities may be artifactual
and important activities may be missed.

Although many techniques ha vebeen proposed for movement correction
[2, 3, 4, 6, 11 ], most of these techniques use local hill-climbing optimization
approaches. In general, movement correction of fMR time-series is a multidi-
mensional optimization problem which may contain local minima. Therefore,
these approaches are not appropriate. In this paper, we propose a novel method
which uses boundary based genetic algorithm for movement correction of fMR
data. We register a series of fMR images to a reference MR image. It conquers
the local minimum problem using the global search nature of genetic algorithm.

Consider tw o imagesf : 
f �!Qf � R and g : 
g �!Qg � R where

f and 
g are the domains of images f and g, respectively. Registration of
images f and g is the process of performing spatial transformation on the
images so that the voxel positions of images correspond to the same points in
the imaging space. Without losing generality, let us consider one image, say
g, as the reference image and that the spatial transformation is performed on
the other image f to match g. Let S denote the spatial transformation and
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f 0 denote the image f after transformation. We are in terestedin registering
the boundaries of a prominent object. Let Cf 0 and Cf be the boundaries of the
object in f 0 and f respectively. When p 2 
f and q 2 
g , one can write

Cf 0(q) = Cf (S(p;�))

where q = S(p;�), and � indicates the set of parameters for spatial transfor-
mation.

We assume that the spatial transformation S is an a�ne transformation.
That is when p 2 
f , S(p;�) = Mp where the linear transformation matrix
M is a combined matrix of the translation matrix T, cen ter translation matrix
C, rotation matrices Rx;Ry, and Rz, and scaling matrix S. M can be written
as M = TRxRyRzSC which contains nine parameters [9].

2. Boundary Based Distance Transform

In our approach, image registration is to minimize a distance function that
measures mismatch of corresponding boundary positions of the object in f 0

and g. Let Cg be the boundary of the object in image g, D(�; �) be the distance
function betw een the boundaries of tw o images andg00 be the reference distance
image obtained from distance transform of g. Then

D(Cf 0 ; Cg) =
X

p02Cf0

g00(q00)

where p0 is a v oxel inf 0, q00 is the equivalent voxel of p0 in g00 and g00(q00) is
the v alue of that particular voxel. The perfect alignment is achieved when D
is minimized.

Sev eral distance transform techniques exist to obtain the reference distance
image, and the chamfer distance transform [1] is the most popular one because
of its speed and simplicity. For image g with boundary Cg, chamfer distance
transform convertsg in to a binary imageg0 consisting of boundary elements and
non-boundary elements, and then convertsg0 in to a c hamfer distance imageg00

where each element has a value that approximates the distance to the nearest
boundary element q 2 Cg .

3. Genetic Algorithm

Local hill climbing algorithms are not suitable for optimization of distance
function due to local minima. Though some stochastic global search procedures
like simulated annealing [7] are available, they are time-consuming and not
strongly reliable. In this section, we introduce genetic algorithms (GA) [5, 8, 10]
for optimization of the distance function in our study.
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3.1. Genetic Optimization

GA is a class of global optimization techniques that model some natural phe-
nomena, namely genetic inheritance and Darwin's strife for natural survival. It
attempts to maximize a parametric function E(�) referred to as the evaluation
function where � = f�1; �2 : : : �ng is the set of parameters and n is the number
of parameters. GA �nds the optimal set �� of parameters such that

�
� = argmax

�
E(�)

In our application, the evaluation function is

E(�) = �D(Cf 0 ; Cg) +A

where constant A is added to make E(�) positiv e for all parameter sets.The
algorithm evolves e�ciently in the whole parameter space in a probabilistic
manner to realize the global optimal parameters.

To formulate GA, all parameters �i 2 � are represented with binary strings
called genes. A chr omosome is formed by concatenating genes representing
di�erent parameters of the evaluation function. If 
i denotes the gene repre-
senting parameter �i, the chromosome c can be written as c = 


1


2
: : :
n. A

populationP consists of a set of chromosomes representing the same parameter
set

P = fc1; c2 : : : cKg

where K denotes the population size.
GA performs multidirectional search by maintaining a population of chro-

mosomes encoding potential solutions. Optimization begins by relating the
distance function to an evaluation function, and de�ning a population of chro-
mosomes representing parameters of the evaluation function. The population
is randomly initialized and iterativ elyupdated by performing genetic opera-
tions until the ev aluation functionis maximized. Genetic operations namely,
selection, crossover, mutation, and exchange are performed to update the pop-
ulation in each generation. This can be formulated as follows:

Randomly initialize P of size K
While not end

P = selection(P)
P = crossover(P)
P = mutation(P)
P = exchange(P)

Repeat

3.2. Genetic Operations

A population ev olves from eac h generation by incorporating and exc hanging
new information in every direction of the multidimensional parameter space.
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In ev ery generation, GA tries to get rid of inferior members and encourages re-
production and exchange betw een superior members in an optimal way towards
the optimum solution.

3.2.1. Selection

Selection is performed based on the �tness of chromosomes calculated from the
evaluation function. The �tness of a chromosome indicates the closeness of the
chromosome to theoptimal solution. Those chromosomes with higher �tness
values have a better chance and more copies to appear in the next generation.
Before the selection process, a simulated biased roulette wheel with slots sized
according to chromosome �tness is constructed. The selection process is then
carried out by spinning the roulette wheel K times. Each time, w eselect a
single chromosome for a new population. The population size is thus held
constant from one generation to the next.

3.2.2. Crossov er

Crossover operation occurs among the chromosomes selected from the current
population with a probability of pc. This gives us an expected number pc �K of
chromosomes undergoing crossover operation. The selected chromosomes are
paired randomly and the crossover operation takes place in each pair where the
bit patterns beyond a randomly selected bit position of the two chromosomes
are in terchanged.

3.2.3. Mutation

Mutation introduces new information to the current population at bit lev el.
Every bit of each chromosome in a population has a probability pm for mutation
by simply reversing its value. The expected number of mutated bits is given
by pm � N � K, where N is the length of a chromosome. Mutation should be
used sparingly as in nature because it is a random search operator; otherwise
the algorithm will become little more than a random search.

3.2.4. Exchange

Exchange occurs betw een pairs of chromosomes in a subset of the population
where each chromosome was selected with a probability of pe from the current
population. The genes at a randomly selected position of a randomly selected
pair of chromosomes from the subset are interchanged. pe �K number of chro-
mosomes are expected to undergo exchange operation. The exchange operator
forces the population to increase its div ersityand thus prev ents premature
convergence during optimization process.
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4. Motion Correction

We demonstrate our techniques for analysis of a fMRI time-series using images
obtained in a visual experiment. All images were acquired on 3T Bruker Med-
spec 30/100 system at the Max-Planck-Institute of Cognitive Neuroscience,
Leipzig, Germany.

4.1. Visual Experiment

While a subject was performing the experiment, 2D T �
2
-weighted images, each

with 64 scans, were acquired using a gradient-echo FLASH sequence. An 8Hz
alternating checkerboard pattern with a central �xation point w asprojected
on a LCD system and subjects were ask ed to �xate on the point during stimu-
lations. F our successive ON and OFF stimuli were presented each at a rate of
5.162 s/sample. The stimulations were repeated for eight cycles. Extensive ex-
periments sho wed K = 40, N = 32, 30 iterations for GA, pc = 0:5, pm = 0:005
and pe = 0:1 gave satisfactory results.

The chamfer distances before and after movement correction of the image
series are shown in Figure 1(a). The convergence of the algorithm is illustrated
by showing a particular slice in Figure 1(b).
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Figure 1: (a) Chamfer distances betw een boundaries of fMR slices and a refer-
ence image obtained before and after registration (b) Illustration of convergence
of chamfer distance betw een boundaries of an fMR slice and a reference image.

4.2. Conclusion

The experiment results show signi�cant improvement in the chamfer distance
of the image slices by applying our novel algorithm. The genetic algorithm also
shows rapid convergence of the distance function. Because only the boundary
voxels are involv ed in computation, our technique is more e�cient than those
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volume based techniques where all brain voxels are involved in computation.
Due to the global search nature of genetic algorithm, this novel technique does
not have local minimum problem. We tried gradient descent technique and
genetic algorithm show ed superior performance.As a conclusion, our boundary
based genetic algorithm gives great e�ciency and e�ectiveness in movement
correction of functional MR images.

References

[1] G. Borgefors. Distance transformations in arbitrary dimensions. Computer
Vision, Graphics, and Image Processing, 27:321{345, 1984.

[2] D. L. Collins, P . Neelin,T. M. P eters, and A.C. Evans. Automatic 3D
intersubject registration of MR volumetric data in standardized taliarach
space. J. Computer Assisted Tomography, 18(2):192{205, 1994.

[3] R. Cox. Algorithms for image registration, motion detection and motion
correction. fMRI12Day, pages 25{42, 1996.

[4] K. J. Friston, J. Ashburner, C. D. Frith, J. B. Poline, J. D. Heather, and
R. S. J. F rackowiak.Spatial registration and normalization of images.
Human Brain Mapping, 2:165{189, 1995.

[5] L. J. Holland. A daptation in Natural and Arti�cial Systems. The Univer-
sity of Michigon Press, 1994.

[6] B. Kim, J. L. Boes, P. H. Bland, T. L. Chenevert, and C. R. Meyer. Motion
correction in fMRI via registration of individual slices into an anatomical
volume. Magnetic Resonance in Medicine, 41:964{972, 1999.

[7] S. Kirkpatrick. Optimization by simulated annealing. Science, 220, 1983.

[8] Z. Michalewicz. Genetic A lgorithm+ Data Structures = Evolution Pro-

grams. Springer, Springer-Verlag Berlin Heidelberg New York, 1996.

[9] J. C. Rajapakse and G. J. Bao. Functional MR image registration using a
genetic algorithm. In Pr oceedings of ICONIP'99, volume 3, pages 922{927,
Nov. 1999.

[10] L. H. Staib and X. Lei. In termodality 3D medical image registration with
global search. In Pr oceedings of the IEEE Workshop on Biomedical Image

A nalysis, pages 225{234. IEEE Computer Society, 1994.

[11] R. P .Woods, S. R. Cherry, and J. C. Mazziotta. Rapid automated al-
gorithm for aligning and reslicing PET images. J. Computer Assisted

T omography, 16(4):620{633, 1992.

 D-Facto public., ISBN 2-930307-00-5, pp. 183-188B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)


