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Abstract. In this paper, we presen t an algorithm that provides adap-
tive plasticit y in function approximation problems: the deformable (fea-
ture) map (DM) algorithm. The DM approach reduces a class of simi-
lar function approximation problems to the explicit supervised one-shot
training of a single data set. This is followed by asubsequen t, appro-
priate similarity transformation whic his based on a self-organized de-
formation of the underlying multidimensional probability distributions.
After discussing the theory of the DM algorithm, w e use a computer
sim ulation to visualize its e�ects on a tw o-dimensional toy example. Fi-
nally, we presen t results of its application to the real-world problem of
fully automatic voxel-based multispectral image segmentation, employ-
ing magnetic resonance data sets of the human brain.

1. Introduction

Function approximation is a classical problem of neural netw ork computation.
V arious algorithms have been proposed to solve this problem, e.g. multi-la yer-
perceptrons trained by the error-back-propagation algorithm [7] or (general-
ized) radial-basis-functions netw orks ((G)RBFnet w orks, see e.g. [2],[5], [1]).
These algorithms are based on the supervised training of a sample data set by
adapting the neural netw ork parameters in order to represent an appropriate
model of the target function. The (G)RBF approach decouples the function
approximation problem into tw o di�erent computational steps: an initial un-
supervised vector quantization (VQ) step is followed by a supervised training
of the output weights.

In this paper, we refer tothe problem of training a changing target func-
tion. F or instance, the target function may represent a dynamical system in
a changing environment involving an inevitable temporal shift of parameters.
A di�erent example are apparent similarities within pattern analysis problems
when comparing di�erent, but similar objects. In biomedical research data sets,
this phenomenon can be observed frequently (see e.g. [9]). One may think of
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the in terindividual variabilit y of anatomical features:there are no completely
iden tical biological individuals, but there may be obvious anatomical \resem-
blances" (see e.g. �g.3.a,b).

These examples imply the need for adaptive plasticit y in order to avoid a
complete re-training of the function approximation netw ork.Within the frame-
w ork of (G)RBF function approximation, it is usually the sup ervise dtraining of
the output weigh ts which is kept 
exible in order to meet the needs of learning
a changing target function, whereas the parameters obtained in the initial VQ
procedure are preserved. F or example, this approach is frequently chosen in
the so-called mixture-of-experts solution of time-series prediction by compet-
ing RBF netw orks (see e.g. [3]). This is motivated by the observation that the
V Q step is computationally more expensive than the adaptive training of the
output w eigh ts.However, there may be situations in which repetitiv e super-
vised training is a critical issue, as an appropriate training data set (i) may be
expensive, e.g. require human working pow er, (ii) may not be available at all.

In this paper, we present an algorithm that provides a reverse, alternative
approach to adaptive function approximation: The output weights of a (G)RBF
net work are kept constant, whereas the adaptive training is performed on the
VQ level. Hereby, the explicit supervised training is restricted to a single data
set. F rom a theoretical point of view, this approach reduces a class of \similar"
function approximation problems to the one-shot training of a single data set,
follo wed by an appropriate subsequent similarity transformation.

2. Theory

Given are t w o similar, but not identical data distributions in the n-dimensional
feature spaces X and Y . Here, the total number of raw data vectors may di�er
betw eenX and Y , i.e. \similarity" refers to probability densities. Let x� 2
X (� 2 f1; : : : ; qg) denote the so-called source distribution, and y

� 2 Y (� 2
f1; : : : ; pg) the target distribution. Given this situation, the basic problem in
this article can be addressed as follows: How canX and Y be matched onto eac h
other in a somewhat optimal manner, including local nonlinear deformations.

In other words, how can we de�ne a mapping S : X ! Y that satis�es the
follo wing constraints: (i) optimal correspondence of probability densities f and
f 0 before and after the match, i.e. minimization of

R
X
kf 0(S(x)) � f(x)k dnx,

where k � k denotes an appropriate norm in IRn, e.g. the Euclidean norm, (ii)
minimization of the total deformation

R
X
kS(x) � xk dnx, and (iii) topology

perserv ation, i.e. neighboring points of the source distribution in X should
be mapped on neighboring points of the target distribution in Y . There is no
unique, optimal solution to this tough optimization problem, as the constraints
may be weighted di�erently. In the following, we present an algorithm that can
at least provide suboptimal solutions.

The target distribution in Y can be represented b y a setCY of prototypical
\codebook vectors" rj , i.e. CY = frj 2 IRn j j 2 f1; : : : ; Ngg as a result of a
suitable V Qprocedure, e.g. Kohonen`s self-organizing map (SOM) algorithm
[4] or minimal free energy VQ [6], [1] etc.

The basic idea of the DM algorithm is the sligh tadaption of the original
codebook vector positions rj 2 CY of the target spaceY by re-training the
codebook vectors with the data points of the source spaceX . This procedure
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Figure 1: Application of the DM algorithm to a toy example. The tw odis-
tributions are similar, but not identical. Here, they di�er with respect to size
and rotation. Note the gradual deformation of the target distribution onto the
source distribution with increasing number of iterations. The lines represent
a triangulation of the original target distribution. The absence of line cross-
ings during the procedure can serve as an indicator for topology preservation
without \twisting".

results in a new correspondingcodebook CX = fwj 2 IRn j j 2 f1; : : : ; Ngg
representing the source distribution in X .

In detail, the desired codebook vectors wj of the source space X are ini-
tialized with the codebook vectors rj of the target space Y . Subsequently,
the codebook vector positions wj are adapted in an iterative procedure: After
randomly choosing a data vector x 2 X , the codebook vectors wj are updated
according to

wj(t+ 1) = wj(t) + �(t)hj(x(t); �(t)) (x(t) � wj(t)); (1)

employing the cooperation function

hj(x(t); �(t)) = exp

�
�
(rj � rmax(x(t)))

2

2�2(t)

�
: (2)
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Figure 2: Architecture of a three-la yer(generalized) radial-basis-functions
(RBF) netw ork.

and an appropriate (e.g. exponential) annealing scheme of the learning parame-
ter �(t) and the cooperation length �(t) for every training step t. The codebook
vector rmax(x(t)) represents the \winner neuron" with respect to the minimal
distance to the presented data vector x(t) in the feature space X . It should be
emphasized that the cooperation function hj(x(t); �(t)) is based on the metric
of the target spaceY , whereas the update of the codebook vectors according to
(1) occurs in the source space X ! The positions of the rj in the target space
Y remain unchanged.

The DM algorithm, as described so far, shows close similarities to Kohonen`s
SOMs. How ev er, there are tw oimportant di�erences to the conven tional use of
SOMs: (i) The vectors rj are not located on a (usually tw o-dimensional) regular
grid. Their spatial positions are \meaningful" in the sense that they represent
a codebook of the target distribution. (ii) There is no random initialization of
the training procedure: the adaptive training of the codebook vectors wj starts
at the codebook vector positions rj of the target distribution. Fig.1 shows an
application of the DM algorithm to the matching of simple tw o-dimensional
data sets.

The iterativ e trainingaccording to the update rule (1) results in a set of
pairs (wj ; rj) of corresponding vectors, representing reference points for the
de�nition of a mapping S : X ! Y; x 7! y. Betw een these reference points, S
has to be determined by interpolation. An elegant way to perform this task is
the use of parametrized self-organizing maps (PSOMs) [8]

How can the DM algorithm be used for adaptive sup ervise dlearning? Let F
denote a function de�ned on the target space Y , i.e. F : IRn � Y ! IRm;y 7!
F(y);m; n 2 IN. In a (G)RBF scenario (Fig.2), the codebook vectors rj can
be interpreted as the input weigh ts of the hidden layer. The output weights sij
can be trained in a supervised manner, employing a simple perceptron learning
rule. The �nal result is a function approximator for F .

Now, the goal is to train a netw orkin order to represent a function F 0 :
IRn � X ! IRm;x 7! F 0(x) with F(y) = F 0(x) for pairs (x;y) of correspond-
ing points of the source and the target space.

The central idea to solve this problem is to use the mapping S as trained
by the DM algorithm for the de�nition of \corresponding" points. Thus, a
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Figure 3: Results of fully automatic segmentation of multispectral magnetic
resonance (MR) imaging data sets of the human brain using the DM ap-
proach. The upper line (a,b) shows so-called T1-weighted MR images. The
low er line(c,d) sho ws thecorresponding segmentations with respect to three
classes \white matter" (light gray), \gray matter" (middle gray), and \liquor"
(dark gray). The images of the left column (a,c) belong to an individual Y ,
the images of the right column (b,d) belong to a di�erent individual X . The
segmentation of Y (c) serv erd as a reference data set for a fully automatic
segmentation of X , shown in (d).

function approximator for F 0 can be trained in an unsupervise dmanner, just
by exploiting the similarity betw een source and target distributions.

After completing the DM training of the mapping S, the information of
the preceding supervised learning of F for a single target data set in Y can be
employed in order to solve the function approximation problem for F 0. Given
an arbitrary point x 2 X , this can be performed by the following computational
steps: (i) Calculate S(x) 2 Y as described above. (ii) Calculate the activations
aj of the codebook vectors rj using the metric of Y . (iii) Calculate the output
activ ationsof the (G)RBF net w orkusing the output weights sij which ha ve
been determined by supervised learning of a single data set in Y .

3. Application to image segmentation

Fig.3 sho ws results of multispectral image segmentation employing the DM
algorithm. This is an interesting problem inorder to demonstrate its perfor-
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mance, as the creation of training data for supervised learning of image seg-
mentation is a very time-consuming task that requires a considerable amount
of human w orkingpower. The details of this application will be described
elsewhere.

Fig.3a shows a coronal cross-section of a human brain obtained by magnetic
resonance (MR) imaging of an individual Y . By changing sev eral physical
MR imaging parameters, k di�erent images of the same cross-section can be
obtained. By anatomically correct registration, these images form a so-called
\multispectral" data set. Hereby, each pixel i can be characterized by a feature
vector y = (g1; : : : ; gk; xi; yi) with n = k + 2, where gj ; j 2 f1; : : : ; kg denote
the gray values of the di�erent images, and xi; yi the spatial coordinates of the
pixel. Thus, the data set can be described as a distribution in a n-dimensional
feature space. Fig.3 refers to a data set with n = 6, i.e. k = 4. The supervised
training of a GRBF classi�er on this data set resulted in the image segmentation
of �g.3c. Fig.3b shows a corresponding brain section of a di�er entindividual
X . Note the di�erences between X and Y with respect to anatomical details
and distribution of gray values. The DM algorithm provided a fully automatic
image segmentation for data set X which can be seen in �g.3d, where Y served
as a reference data set.

�) A similar paper has been presented at ICANN'98.
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