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Abstract.  The utilization of neural network approaches have been
rapidly increasing also in the area of medicine. Thereby both biomedical
modelling as well as data analysis are objects of neural network appli-
cations. On the one hand side neural networks give the possibility for
understanding of brain and cognitition processes. On the other hand
the power of neural networks for data analysis, data visualization and
knowledge discovery is used. In the following we will reflect some of the
actual developments and problems when neural networks are applied in
medical area.

1. Why neural networks in medicine?

The number of neural network applications in medical area is drastically in-
creasing in the last years. Thereby, neural network approaches can be viewed
from two different basic points: On the one hand side, brain models and cog-
nitive functions are described by network models and architectures. Examples
are the concept of spiking neurons, the ART architecture, the Hopfield net-
work, etc. (for an overview we refer to [16]). A widely ranged class of neural
models for description of cortical phenomena is the concept of neural maps
[2],]22],[23],[44]. Especially, cortical brain functions were extensively consid-
ered in the last years and have lead to a better understanding of organization
processes in the sensomotorical area [32] as well as in the visual cortex [31],[5]
or in the auditive cortex [38].

On the other hand neural networks can be taken as technical tools for data
analysis, knowledge discovery and data compression, data visualization, time
series prediction, process control and other. Thereby, the data occurring in
medical applications are often characterized by at least one of the following
properties which often cause difficulties:

e small data sets
e non-linear and high-dimensional data sets

e large noise without any clearly reproducible cause

large data in image processing

scaling and choice of metrics in multidimensional data
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e categoric and non-metric data

Because of these reasons traditional approaches like conventional statistics
and data analysis often fail. Artificial neural networks can help to overcome
some of the above mentioned difficulties in medical applications. However,
intelligent data analysis often requires so-called hybrid approaches combining
several data analysis techniques which may include also other innovative meth-
ods like Fuzzy-approaches, stochastic optimization, genetic and evolutionary
algorithms. In general, the problem of analysis of non-metric data frequently
occurs in social science and medical applications [13, 36].

Some of interesting applications which have also lead to interesting new
developments in the neural network or algorithm design are the in the area
of image processing [45], time series analysis and prediction [21], time series
classification [26], neuro-fuzzy approaches [10] and other, some of them can be
found in this volume. In the following we will demonstrate how neural networks
may be successfully applied for immediately medical assessment if used as a
data visualizing tool. A second exemplary application concerns the clustering
of categoric data using a hybrid approach based on an evolutionary algorithm
including a neural dynamic.

2. Exemplary Applications

2.1. Visualization of physiological parameters for easy
clinical assessment using extended SOM

The therapeutical process in psychotherapy usually is organized in a sequence
of daily single therapy sessions. During the therapy and, especially during the
single sessions, the emotional feeling can vary in dependence on the actual sit-
uation (emotional excitements, as the result of the therapeutical discussion)
which can be observed by individual asses by the therapist. Beside the individ-
ual observations there exist a large pool of instruments to judge the emotional
situation of both the patient and the therapist which consist in a spectrum of
several questionnaires [19, 43]. On the other hand, it is generally known that
emotions influence physiological parameters as for instance heart rate, respi-
ration rate, muscle tension and electrodermal conductivity (skin conductance)
which can end for negative cases in physiological complaints, called psycho-
somatic symptoms, which are under treatment in our clinic. Vice versa, the
therapy process also influences the physiological parameters. The parallel ob-
servation of such psycho-physiological data during therapy sessions together
with a psychological analysis should lead to a better understanding of the
psycho-physiological processes. For this purpose a suitable tool is needed for
an easy parallel assessment.

In this initial investigation the therapy of one patient was considered con-
taining .., = 37 single sessions of approximately 45 Min.. During the several
sessions for both the patient and, additionally, for the therapist the following
parameters were simultaneously obtained: heart rate,muscle tension (by sur-
face electromyogram), skin conductance level (SCL), skin conduction reaction
(SCR). The value are determined as averages over time intervals of 30s. Here
we are interested in the variation of the parameters. Hence, we investigate
only the difference of the parameter for a certain time point in comparison to
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the previous one. In this way we obtain 3105 data vectors for both the pa-
tient and the therapist. Hence, we have n,,.. = 6210 data vectors for neural
network learning. Subsequently, the data were normalized such that for the
resulted vectors v € ¥V CR* we have for all components j: Yormeu; =1, Le.,
all measured parameters are assumed to be of the same importance.

The data serve as input into a Growing Self-Organizing Map (GSOM) [9]
which is an extension of the usual Self-Organizing Map (SOM) [23]. In general,
neural maps project data from some (possibly high-dimensional) input space
Y C RPv onto a position in the (usually hypercubical) neuron lattice A in
a topographic manner. For this purpose, during data driven learning, the
algorithm distributes pointers W = {w,} of the neurons r € A in the input
space according to the input distribution P (V) such that

P(V)~P(W)" (1)

with « = £ holds [33],[24]." The exponent « is called the magnification factor.
Thereby topographic mapping means a topology preserving projection, i.e. a
continuous change of a parameter of the input data should lead to a continuous
change of the position of a localized excitation in the neural map.? Because
of the lack of space we refer to [23],[32],[40] for detailed considerations. The
GSOM not only adapts the neural pointers, additionally the lattice structure
is adapted remaining a hypercube structure [9] and hence, improves the degree
of topology preservation. In general, a better topology preservation leads to
a better accuracy of the map. Several approaches were developed to judge
the degree of topology preservation for a given map [7]. A robust tool is the
topographic product P [8] which comprise the information about violations of
the topology preservation in a single value. P can take positive and negative
values indicating that the dimensionality of the grid A is too low dimensional
or too high, respectively, for representation of the given data. If one obtains P
approximately zero the shape of the lattice matches the data distribution. For
a detailed introduction and analysis of the properties we refer to [8] and [40].
In this way it can be understood as a nonlinear principle component analysis
[39]. A further extension of the basic SOM, also included in our application,
concerns the magnification : the usual SOM distributes the pointers W ac-
cording (1) BAUER ET AL. in [6] introduced a local learning parameter e,

with () o« P (V)™ which finally leads to a relation P (V) ~ P (W)® with
o/ = a(m+1) and, hence, allows a magnification control. Especially, one can
achieve a resolution o/ = 1 which maximizes the mutual information (corre-
sponding to a maximization of the entropy) [27].

We applied the GSOM with included magnification control to the above
therapy data and result a 7 x 5 x 7-lattice for SOM. The topology preservation
assessment by a special kind of the topographic product [37] yields a value
P = 0.007 referring to a good topology preservation. The magnification control
scheme have lead to a improvement of the entropy: without control the entropy
was 94.8% of the maximal possible entropy [42] value in comparison to 96.4%
using the control scheme.

Because of resulting a 3d-lattice as the final shape for the grid A we can
interpret the neuron grid positions as colors in the three-dimensional colorspace

1This result is valid for the one-dimensional case and higher dimenional ones which
separate.
2In this way the SOM determines the non-linear principle components of the data.
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as the intensity of the colors red, green and blue in the well known RGB-model.
In this way we are able to code each data vector as a color pixel by application
of the map Wy,_, 4 realized by the trained network. After this an easy visual
interpretation is possible by the therapists is possible as depicted in Fig. 1:
In Fig. 1 we plotted for each time point in all sessions the mapped original
data according to the above outlined color coding. For example, we observe a
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Figure 1: Color description of the variation of the physiological parameters
for the patient (above) and the therapist (below) for the complete therapy
for each single session. Each colored pixel code a characteristic pattern of
change. Global color texture changes correspond to variations in the therapy
(see text for details). Single colors can be related to charteristic patterns.
The color representation is resulted from a GSOM generated 7 x 5 x 7 SOM-
lattice including a magnification control scheme for maximizing the entropy.
(Regrettably, only a greyscale image can be provided in the printed paper. A
color image is available on request from the author.)

clear change in the distribution of colors after the 20th session: for the ther-
apist picture the occurrence yellow typed colors is increasing, in the patient
picture in the same area the frequency of blue colored pixels is increased. Now,
the following interpretation (in the sense of psychotherapy research) can be
done: this change in the color distribution is related to a change in the treat-
ment concept regarding the therapeutical interactions. An second alteration in
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the color distribution of the therapist picture can be recognized for the last 5
sessions which are indicated by the detachment phase of the patient from the
therapist which plays an important role in the psychotherapy process. This
phase is indicated by a drastic change of the patient-therapist-relation. On the
other hand, investigating the initial phases of therapy sessions we observe that
the frequency of blue-green colors for the patient decreases. We have found
that these colors correspond to a decreasing heart rate. This is in agreement
to the assessment by therapist where is stated that in the first sessions there
was a big emotional pressure and expectation from the patient in the beginning
phase which is lost during the following ones.

Moreover, it is possible to assign characteristic patterns of parameter
changes to specific colors by deeper analysis. For instance, as mentioned above,
we found that green-blue colors are related to a decreasing heart rate whereas
red color indicates an increase. Yellow-green colors symbolize increasing muscle
tensions. The rise of electrodermal conductivity is coded by magenta-like col-
ors. However, for a detailed considerations further investigations are necessary.

In conclusion, we can say that the demonstrated visualization technique of
physiological parameters during psychotherapy sessions can help therapist to
understand the psycho-physiological feeling of the patient.

2.2. Clustering of non-metric data using evolutionary al-
gorithms

The investigation and analysis of non-metric data frequently occurs in med-
ical application and social sciences. However, these problems are difficult to
capture. One possibly way to handle such data is the application of Genetic
or Evolutionary Algorithms (EAs). EAs are a biologically motivated stochas-
tic iterative optimization method. In EAs the manipulation of objects, which
are called individuals s € II, is separated from their evaluation by a fitness
(objective) function F. The set IT is called population. There exist two basic
manipulation operators: mutation as random change of parameters and the
crossover as merging of two individuals. Usually the p individuals of IT gener-
ate A new ones with A > u. After these manipulations F' judges how proper
the individuals fulfil the considered task.® If in one time step all individuals
have gone under manipulation and evaluation, from these the selection operator
extracts a new generation of the population for the next iteration step. For a
detailed overview we refer to [3] or [29]. The basic advantage is that in EAs
the manipulation of the object is strictly separated from their evaluation and,
hence, a larger set of manipulation techniques are available.

In the following we demonstrate the application of EAs for clustering of
categoric data in psychology research. At the same time we suggest some
extensions of the basic EA schemes to improve the performance which are an
advanced selection strategy and a multiple population approach with migration
inspired by the learning dynamic in neural maps. Furthermore, we emphasize
the aspect of a proper choice of the fitness function.

Modern psychology uses all the standard methods of mathematical statis-
tics to extract relevant features, structural information and other data obtained
from several therapeutical approaches. One of the mostly used method for

3Thereby, the fitness function may contain explicit expert knowledge regarding to the
optimization task which may be difficult to code otherwise.
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acquisition of structures of interpersonal relationships in the area of psycho—
dynamic psychotherapy research is the method of the ’Core Conflictual Rela-
tionship Theme' (CCRT) developed by LUBORSKY, [28]. The method investi-
gates short stories about relationships, so—called relationship—episodes, which
are often reported by the patients in their therapeutical sessions. In each of
these episodes the components wish of the subject, response of the object and
response of the subject were encoded which are used to perform the CCRT
using a system S of si,. = 34 so-called standard categories S}’ to classify
the wishes [12]. Each standard category describes an aspect in verbal manner.
However, the categories are often correlated in meaning because of they are
describing not only contrary but also the same or similar psychological topics.
Therefore, they are collected in a set C% of ¢¥,,. = 8 clusters C}¥ [4] which are
then used in further considerations instead of the standard categories. Anal-
ogously, we have si7 = 30 categories S7° € §" for encoding the response
of both the object and subject [12] Wthh are collected in 7. = 8 clusters
Cre € C™ and c?,, = 8 clusters C}* € C"*, respectively. However, the clusters
also are still correlated again. Furthermore, several considerations have shown
that the used scheme of assignment still leads to unsatisfactory reliability rates
and interpretation problems in investigations based on this scheme. For further
and more detailed critical remarks we refer to [1].

For solving the re-clustering problem of standard categories at first we de-
termined the similarities between the standard categories S, S} on the basis
of their (symmetric) conditional probabilities p® (i | ) (in analogy p"° (i | j),
p"® (i | j) for the responses of object and subject). Now, to perform the clus-
tering, it has to be done as a clustering of proximity data. This problem we
can apply the approach of vector quantization of proximity data introduced by
HOFMANN & BUHMANN [18] and GREAPEL & OBERMAYER [15]:

M M Cmax o
M (Z - 1) @

=1 k=1

with p, = Ziu u;,4/M the normalized percentage of the data in that cluster
and M the number of data. The values D; 1, are the dissimilarities between the
data points which we can define as difference of the conditional probabilities
from the unit. H serves as a cost function and has to be minimized. As pointed
out in [18] H is independent on non-symmetric dissimilarities and permutations
of the cluster indices. Moreover, the cluster assignments u;, are distributed
according to the Gibbs distribution

(3)

P (H) = exp <w>

T

whereby T plays the role of a temperature, and F (H) is the free energy. Yet,
because of the statistical dependence of the assignments the Gibbs distribu-
tion P (H) can not be exactly rewritten in a factorized form, however a mean
field approximation and corrections to the assignment correlations has been
derived [18]. Yet, H requires a priori known value ¢yax, which is, in fact, a
hard restriction and difficult to overcome [11]. For this purpose, the so-called
partition entropy was introduced which explicitly takes the number of clusters
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into account [20]:

Cmax

M
| TTomlean dok=t 2imt Ui log ()

1 _ Cmax

M

(4)

Ep (cmax) is often applied in medical applications [13]. Yet, these approaches
require metric spaces as data in contrast to the topographic vector quantizer.
Therefore, if we combining the partition entropy Ep (cmax) (4) and H (2) we
obtain as new fitness function:

573 (Cmax) -

1

.7: _ ]\Iln( rg:;)x (5)
1 — =

which explicitly takes the number of clusters into account and is also applicable
to non-metric data. Hence, F incorporates both demanded features. As it
shown in [15] it is possible to minimize H by simulated annealing, and, hence
this approach could be applied to optimize F.

Yet, it is difficult to generate a careful annealing scheme, because the of the
large number of local minima. A possibility for convergence improvement is the
application of evolutionary algorithms to optimize H or F. For the application
of EAs for clustering as presented below it is useful to interpret clustering as a
partitioning problem under constraints. Thereby, a partitioning of a nonempty
set S related to a nonempty set C is an unique and surjective mapping

®:S5—-C . (6)

Then a partition Wg of S with respect to the partitioning @ is given by Ug =
{71 (C) | C € cod (®)} whereby cod (®) is the range of ®. These constraints
are collected in a fitness function which may be identified as the above F.

For solving the partitioning task each individual in a generation of an EA
describes a certain partition. In the present paper we assume S to be discrete
containing s,.x elements. Then we can take each individual as a string of
length spax the components of which contain the cluster index onto which
the respective component has to be mapped. Mutation of an individual is
defined as a random change of the mapping for a randomly selected individual
component, and the crossover is the usual two-point crossing.

Several approaches were developed to improve the above basic EA-scheme.
Especially, multiple subpopulation approaches are widely considered [14, 30].
Thereby the basic population IT is divided into subpopulations IT; which have
more or less communication during the evolution which may be realized as
migration. To improve the performance of the basic subpopulation approach
we arranged the subpopulations II; in a topological order usually chosen to
be a regular lattice, for instance a ring or a quadratic lattice *. Between
these subpopulations a migration scheme was introduced which is adapted from
the SOM-learning: a visit (migration) from individuals between neighboring
subpopulations is allowed for a short time regarding to the topological order )
in IT and with respect to a time-dependent neighborhood function

hi« (8, k) = (1.0 — €p,) - exp (—W) +ep (7)

4In general, other arrangements are also admissible. Then the lattice can be defined by a
connection matrix which describes the neighborhood relations.




ESANN'2000 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2000, D-Facto public., ISBN 2-930307-00-5, pp. 165-176

with a small positive number €, [41]. During the evaluation of a certain subpop-
ulation II;« the neighborhood function h is applied to determine the number of
visiting individuals from each other subpopulation. Because of h; (¢, k) € (0, 1]
we can interpret h;« (t,k) as a probability for migration of an individual of the
subpopulation II; into the actual evaluated II;~. The value ;- ; is defined as
the rank of neighborhood r;+ , = rank (IL;», II;; ) with respect to the topo-
logical order € between the actually evaluated subpopulation II;« and another
IT;. As shown in [41] this approach drastically improves the adaptation rate
for EAs.

For selection of the offspring generation we have used a mixture of the
well-known (u, A\)— and the (p+ A)—strategy (in the notation of SCHWEFEL,
[35]). While in the (&, \)—strategy where p individuals produce A children with
i < X only the p best of the A children form the new population, in the (p + A)—
strategy all p + A individuals are allowed for the selection process. Whereas in
the second strategy the best solution is preserved but the evolution tends to
stagnate into a local minimum, in the first one the convergence is decelerated
to allow reaching deeper minima (near the global minimum) but good solutions
may be lost during the evolution. Balancing the advantages of both strategies
[29] in the (u* A)—approach again p individuals produce the A preliminary
offsprings [17]. However, in the selection step the p; best individuals of the old
generation and the A\ new ones are allowed for comparison with respect to their
fitness to generate the final offspring generation of p individuals. Thereby
1 depends on time t of evolution appearing as the number of generations
performed:

pe =int (o — pir) -y ()] + pr (8)

with int [z] stands for the integer value of x. The function ~(¢) is of de-

creasing sigmoid type with 0 < 7 (¢) < 1 here chosen as the Fermi function

~v(t) = m to switch near the t,-th generation from the (u+ \)—
exp T

strategy to the (i, \)-strategy in a definite range of generation steps (= 4tp).
We have pg = p for the initial value and flim e = pr (r < p) coding a
[ — OO

minimal survival probability for the parent individuals. In this way we get a
smoothed switch from the (& + A)— to the (u, )—strategy, what we call (u * \)—
strategy, combining the advantages of both strategies and, additionally, always
preserving the best p. individuals (slightly different from the original (g, \)—
strategy).

At first we computed F according to (5) for the original clusters C¥, C"°
and C"® of the respective standard categories as defined in [4]. Additionally,
we computed the weighted concordance coefficient % [1] for comparison with
other investigations in the area of psychotherapy research (see Tab. 1). The
R—coefficients may be interpreted according to Tab. 2 [34]. Applying F from
(5) as fitness measure in the EA we result cluster solutions with higher number
of clusters as depicted in Tab. (1): However, the increased &-values as well
as the better (decreased) F-values refer to a better intra-cluster agreement
which correspond to psychological considerations: From a psychological point
of view the new clusters show a better coherence which allows a more clear
interpretation. Moreover, the increased cluster number allows a more detailed
description [1, 25].

From technical point of view we used in our computations pu.; = 400 in-
dividuals which were evenly distributed onto 10 subpopulations. The subpop-
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K F 3 F Crmax
database | original original EA EA EA
clusters clusters clusters clusters clusters
pP¥ 0.334 6.88 0.435 6.24 10
P 0.323 6.28 0.421 6.16 9
P 0.479 6.16 0.504 6.09 9

Table 1: Values for the weighted concordance coefficient & and the fitness
function F according to the original clusters and the EA generated solutions.

k—coefficient meaning
k<0.1 no agreement
01<k<04 weak agreement
04< k<06 clear agreement
0.6 <k<0.8 strong agreement
0.8<k nearly complete agreement.

Table 2: Different values for the weighted concordance coefficient £ and the
respective meaning for intra cluster agreements of the considered observables

ulations were arranged on a ring as topological structure, whereby g, in (8)
was given as it = 1. We trained the ensemble during t,,,x = 5000 time steps.
The characteristic time scale for decreasing the neighborhood between the sub-
population was defined as linear shrinking of o, () in (7) with o3, (0) = 3 and
Op (tma.x) =0.2.

The choice of the new fitness function F gives the ability to compare cluster
solutions with different cluster number as well as optimization of the cluster
number during the evolutionary process. Moreover, the SOM-like migration
scheme generated in neighbored subpopulations cluster solutions which are
judged by psychotherapist as similar. However, a mathematical proof of this
fact is difficult because of the complicate structure of the fitness function but
should subject of further considerations as well as an improvement of the fitness
function.
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