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Abstract

In statistical modelling, an investigator must often choose a suitable model
among a collection of viable candidates. There is no consensus in the research
community on how such a comparative study is performed in a
methodologically sound way. The ranking of several methods is usually
performed by the use of a selection criterion, which assigns a score to every
model based on some underlying statistical principles. The fitted model that is
favoured is the one corresponding to the minimum (or the maximum) score.
Statistical significance testing can extend this method. However, when enough
pairwise tests are performed the multiplicity effect appears which can be taken
into account by considering multiple comparison procedures. The existing
comparison procedures can roughly be categorized as analytical or resampling
based. This paper describes a resampling based multiple comparison technique.
This method is illustrated on the estimate of the number of hidden units for
feed-forward neural networks.

1. Introduction

Many model selection algorithms have been proposed in the literature of various
research communities. The existing comparison procedures can roughly be
categorized as analytical or resampling based . Analytical approaches require certain
assumptions of the underlying statistical model. Resampling based methods involve
much more computation, but they remove the risk of making faulty statements due to
unsatisfied assumptions [4]. With the computer power currently available, this does
not seem to be an obstacle. The standard methods of model selection include classical
hypothesis testing, maximum likelihood [2], Bayes method [6],  cross-validation [7]
and Akaike’s information criterion [1].

Although there is active debate within the research community regarding the best
method for comparison, statistical model selection is a reasonable approach [5]. We
aim at determining which of two models is better on average. A way to define “on
average” is to consider the performance of these algorithms averaged over all the
training sets that might be drawn from the underlying distribution. Obviously, we
have only a limited sample of data, and a direct approach is to divide available data
into a training set and a disjoint test set. However, the relative performance can be
dependent on the training and test sets.
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One way to improve this estimate is to repeatedly partition the data into disjoint
training and test sets and to take the mean of the test set errors for these different
experiments. The standard t-test for testing the difference between two sample means
is not a valid strategy, since the errors are estimated from the same test sample, and
are, therefore, highly correlated. A paired sample t-test should be used instead.

However, when more than two models are compared, paired t-tests should be
extended to multiple comparison strategies. The first idea that comes to mind is to test
each possible difference by a paired t-test. The problem with this approach is that the
probability of making at least one Type I error increases with the number of tests
made. This phenomenon is called selection bias.

A general method to deal with selection bias that is useful in most situations is
called the Bonferroni multiple comparisons procedure. The Bonferroni approach is a
follow-up analysis to the ANOVA method and is based on the following result. If c
comparisons are to be made, each with confidence coefficient (1-alpha/c ), then the
overall probability of making one or more Type I errors is at most alpha. However,
the proper application of the ANOVA procedure requires certain assumptions to be
satisfied, i.e., all k populations are approximately normal with equal variances.
Residual analysis can be applied to determine whether these assumptions are satisfied
to a reasonable degree.

Other procedures, such as Tukey and Tukey-Cramer, may be more powerful in
certain sampling situations.

In the following sections, we describe statistical techniques applied to model
selection, including significance testing, pairwise comparison and multiple
comparison strategies. Then, we justify the use of analysis of variance as a valid
strategy to compare different output error means that allows us the estimate of  the
optimum number of hidden units in feedforward neural networks. Finally, the results
of computer simulation for an actual learning task are discussed.

2. Strategy description

We will describe our strategy in terms of a classification task by feed-forward
neural networks. It is assumed that there exists a set X of possible data points, called
the population. There also exists some target function, f, that classifies x ∈  X into one
of K classes. Without loss of generality, it is assumed K=2, although none of the
results in this paper depend on this assumption, since our only concern will be
whether an example is classified correctly or incorrectly. A set of competing models
are generated, they differ in the number of hidden units. Misclassifcation errors from
the population X is computed for each model and  statistical tests are used to decide
which of the competing models are better.

Dietterich [3] studied different statistical tests for comparing supervised
classification learning algorithms and the sources of variation that a good statistical
test should control. In our method, these sources of variation are controlled as
follows:
•  Selection of the training data and test data. The same training data set and test

data set are used to train and test all the competing models. A two-fold cross-
validation method is performed since in a k-fold cross-validation method (k > 2)
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each pair of training sets shares a high ratio of the samples. This overlap may
prevent this statistical test from obtaining  a good estimate of the amount of
variation that would be observed if each training set were completely
independent of previous training sets.

•  Internal randomness in the learning algorithm. The learning algorithm in each
competing model must be executed several times and consequentely several
misclassification errors are generated. It is necessary to choose one.  If the
minimum of these values were taken, this would be the best case and we would
think we are near the global minimum of the error function. But this would be a
bad selection in a statistical test because an extreme case was chosen. To avoid
extreme cases, the maximum and minimum misclassification errors are
eliminated and the averaged error is calculated. We are trying to determine how
the model behaves so we are focusing on the error samples on average better than
just considering the minimum error.
Furthermore, we must account the variation from the selection of the test data and

from the selection of the training data, so the above process is several times repeated.
At the beginning of each iteration, the training and test set are randomly determined.
At the end of this process misclassification error mean is calculated. The strategy is
summarized as follows:

For v:=1 to V  (30 times)
   Random selection of the training and test set, both of them with the same size.
   For h:=model one to model  H
       For  r:=1 to R

Train model h.
Error(r) = misclassification error.

       End
       Error_Model(v,h)=Average(Error)
   End;
End;

We recommend at least 30 misclassification error samples in order to guarantee
the results are distributed according to a normal distribution.

The goal  of our strategy  is to compare different models and to determine, by
analysing the mean and the variance of each one of them, if differences among the
models exist. When comparing more than two means, a test of differences  is needed .
An exploratory/descriptive analysis must be the first step. An univariate analysis of
the interval variable by the grouping variable helps to understand the distribution and
says whether it is parametric. Both the parametric test for differences (Anova) and the
nonparametric test (Kruskal Wallis) for differences are ways to do an analysis of
variance. These tests look at how much variation or spread there is in each sub-group.
The more within group variation that there is in each sub-group the more difficult it
will be to positively say that there is a difference between the group's mean.

There are some questions to be answered:
1- Are the populations distributed according to a Gaussian distribution? While this

assumption is not too important with large samples sizes, it is important with
small samples sizes (specially with unequal samples sizes). This assumption has
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been tested using the method of Kolmogorov and Smirnov and we have always
found that the results are according to a Gaussian distribution.

2- Do the populations have the same standard deviations? This assumption is not
very important when all the models have the same (or almost the same) number
of error subjects, but it is very important when this number differs.  In our
method the number of error subjects is the same in all the models.

3- Are the data unmatched? We have to compare the differences among group
means with the pooled standard deviations of the groups. In our experiment the
data are matched.

4- Are the difference between each value and the group mean independent? This
assumption is in practice difficult to test. We must think about the experimental
design  As the sources of variation have been taken into account, we assume this
difference is independent.
In our method, the assumptions to use the Anova test have been met. Since a

large number of competing models is compared, Bonferroni correction is applied to
deal with selection bias.

The null hypothesis is usually rejected. In other words, variation among
misclassification error means is significantly greater than expected by chance. Thus,
groups of models with not significantly different misclassification error means are
estimated. To do this, the models are sorted by the misclassification error mean. Two
groups are not significantly different if
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is  the within-sample variation.
In the group with the least misclassification error mean the model with the least

hidden units is selected. (Occam’s razor criteria).
We have assumed that the goal is to find a network having the best

generalization performance. This is usually the most difficult part of any pattern
recognition problem, and is the one which typically limits the practical application of
neural networks. In some cases, however, other criteria might also be important. For
instance, speed of operation on a serial computer will be governed by the size of the
network, and we might be prepared to trade some generalization capability in return
for a smaller network.

It is desirable to consider a set of several competing models simultaneously,
compare them and come to a decision on which to retain. We have therefore been
concerned primarily with the choice of a model from a set of competing models rather
than with the decision whether or not a new  model with more hidden units should be
used .

Bruges (Belgium), 26-28 April 2000, D-Facto public., ISBN 2-930307-00-5, pp. 55-60
ESANN'2000 proceedings - European Symposium on Artificial Neural Networks



3. Simulation results

Let us consider the problem of determining the number of hidden units in a feed-
forward neural network in a classification task. Let us define a data set where each
input vector has been labelled as belonging to one of two classes C1  and C2. Figure 1
shows the input patterns. The sample size is N1=270 data of the class C1 and N2=270
of the class C2.

In the simulation study, we consider multi-layer perceptrons having two layers of
weights with full connectivity between adjacent layers. One linear output unit, M
sigmoid (logistic, tanh, arctan, etc.) hidden units and no direct input-output
connections. The only aspect of the architecture which remains to be specified is the
number M of hidden units, and so we train a set of networks (models) having a range
of values of M.
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Figure 1. Sample Data Distribution

The results of the simulation study are given in Table 2. Two models are in the
same group if  the difference between its means is less than 0.04973 (statistical
significance 0.1). Thus, from the group of models with less error mean (7 hidden
units) the model with 4 hidden units could be selected.

Table 1. Simulation Results

Hidden
Units

Error Mean
Models not
significantly

different
7                  0.06139      7  6  9 10  8  5  4
6                  0.06278      7  6  9 10  8  5  4
9                  0.06417      7  6  9 10  8  5  4
10                0.06546      7  6  9 10  8  5  4
 8                 0.06593      7  6  9 10  8  5  4
 5                 0.07398      7  6  9 10  8  5  4
 4                 0.08630      7  6  9 10  8  5  4
 3                 0.14731      3
 1                 0.27870      1  2
 2                 0.27880      1  2
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If the number of models to compare is increased, results show that four hidden
units is a good selection, that is, there is not a statistically significant difference
among the error means of neural network architecture with four or more hidden units.
The same results are obtained when the number of data is increased.

4. Conclusions

An alternative method has been proposed to model selection, where no
distribution assumptions about the data are needed. Our goal have been to determine
that, in a finite set of models, it is possible to find a subset, whose error mean
differences are not significant with respect to the smallest. Our statistical testing
procedure has been designed avoiding dependencies and randomness in order to be
able to obtain sample data from different models under the same circumstances. After
collecting data from a completely randomized design, sample data means are
analyzed. The way to determine whether a difference exists between the population
means, is to examine the spread (or variation) between the sample means, and to
compare it to a measure of variability within the samples. The greater the difference
in the variations, the greater will be the evidence to indicate a difference between
them. A statistical test procedure has been used to estimate groups of models which
differences among the misclassification error means are not significantly greater than
expected by chance.

This study shows how statistical methods can be employed for the specification
of neural networks architectures. Although the simulation study presented is
encouraging, this is only a first step. More experience has to be gained  through
further simulation with different underlying models, sample sizes and level to noise
ratios.
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