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Abstract.  This w orkshows how to train the activation function in
neuro-wavelet parametric modeling and how this improves performance
in a number of modeling, classification and forecasting.

1. Introduction

Neuro-wavelet net wrks (NWN’s) [1, 2, 3 ] are widely used in modeling, fore-
casting and classification problems, because they are good approximators of
strongly non-linear functions. Y et,it is mandatory to accurately select the
net w ork structure, in order both to obtain good performance and to reduce the
number of free parameters, and consequently the size of training set.

An interesting solution to many applications comes from neuro-wavelet
parametric modeling NWPM [4], which consists of describing a given problem
in terms of a parametric malel based on NWN’s. A set of predefined parameters
(weigh ts and certers of the NWN) is computed (via training) from a collection
of numeric samples of the problem. The extracted parameters have a strong
relationship with the problem, of which they are a compact repr esentation and
they allow either to forecast future samples, or to predict the behavior of the
problem in different operating conditions, or to classify the samples.

Although it has been proven by several authors that any bounded func-
tion can be approximated with any giv en accuracy with a NWN, one of the
requirements of NWPM is to use the smallest possible number of parameters
which provide the desired accuracy. Therefore one key issue in NWPM is to
find the optimal activation function (e.g. Gaussian, Wavelet, sigmoid, spline)
which minimizes the number of parameters that provide a given accuracy).

The optimal function can seldom be derived analytically by examining the
problem (that happens only in structur ed neus-wavelet networks). Instead, in
most cases the optimal function is unknown and therefore most users of NWPM
tend to choose the activ ation functionthey are more familiar with. In other
cases, an empirical search from a set of commonly used functions is performed.

Scope of this work is to show how the optimal activ ation function can be
traine d T rainingactiv ation functionis not yet widely used, although an ex-
ample is proposed in [4]. T raining algorithm deries from neuro-fuzzy unifica-
tion [1 | and my significantly improve modeling performance.
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Figure 1: a) Examples of measured optoelectric characteristics of specimen. b)
Block diagram of traditional neuro-fuzzy approaches

1.1. Case Study

We have been dealing with an application where a set of cylindrical specimen
had to be classified according to their geometrical (diameter, thickness), electri-
cal (conductivity) and optical (brightness) properties. Such properties had to
be measured with a set of three very c heap sensors scanned over the specimen,
which provided as many time-varying signals, as shown in fig. 1 (signals of the
three sensors are plotted aside on the same plot, for three different samples).

The specimen had to be classified according to the shape J(t) of signals.
Due to the poor performance of available sensors, the relationship betw een the
measured shape and specimen properties was difficult to express analytically.

We call: O € R4, the vector of geometrial and optoelectric properties of
specimen associated with J(t) : ® — R, the sensor signal as a function of time
t; J e R0 the sensor vector con taining 10 samples.J(¢;) at regular interv als.

Scope of the problem was to filter out the unavoidable measurement noise
and to compensate for sensor non-idealities, in order to provide a clean signal
J(t) to the classifier and to reduce misclassification.

2. Parametric Modeling and Characterization

Most traditional approaches are based on the black-box approach shown in
fig. 1, where a NWN predicts the elements of J (namely, the samples of J(t)
at predefined points) as a function of input vector Q, or vice-versa.

At first, we drew some preliminary considerations on such approaches:

1. the number of net work outputs equals the number of measured points.
From fig. 1 it can be obserwed that all signals are relatively slo wly wary-
ing, therefore statistical correlation of adjacent elements of J approaches
unity (= 0.93 for sensor 1) as well as, consequently, the correlation be-
tween weigh ts of adjacen neurons.

2. Approximation errors can produce estimates of signals which are physi-
cally non plausible (for instance, a local increase instead of a decrease).

3. The positions where the signals are measured are not evenly distributed
and often differ among different manufacturers, therefore signals cannot
always be compared directly. Also the number of points may vary .
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Figure 2: Block diagram of: a) NWPM; b) NWPM estimator/forecaster.

For all these and a few other reasons, w eha vedecided to use a NWPM ap-
proach [4], which is composed of from one to three cascaded blocks (see fig. 2):

e A small NWN (A) is used as a parametric model of the signal, that is,
as a function J(t) of the single net w orkinput ¢. The collection of free
parameters of A (weigh ts, cen ters and biases) constitutes a ector P which
uniquely identifies an estimate .J(¢) of J(¢) and thus of vector 7.

As P is the vector of the free parameters of A, it can be evaluated by
simply training A, to reduce the output error ||J(t) — J(t)]|.

e An optional a-p osteriori orrector, to reduce estimation error. We noticed
that each estimate J(¢;) of J(t;) always was sligh tlybiase dand the bias

w as a function oft;. We have therefore measured and tabulated that par-

ticular function f(t;) and subtracted from the estimate (namely, J(t;) =
J(t;) — f(t;)), as sho wn in fig. 2.a.

The dra wbhak of having an a-posteriori model corrector is tw ofold: an
additional bloc kis required, and the function f(¢;) must be tabulated,
therefore cannot be continuous, as would J (t) be. This corrector can be
avoided ly training the activation function of the NWN, as described in
sect. 3..

e A larger NWN (B) is used as a parameter estimator which predicts the
parameter vector P (instead of J) as a function of input vector Q.

The NWPM can be used in either of the following fashions:

1. by training the netw ork A alone, to get just a compact represemation P
of the problem (to be used, for instance, in classification instead of J);

2. by supplying a representation P to A to reconstruct the original function;

3. by conbining the tw o previous fashions:net w ork A is first trained, then
the parameter vector P is used to reconstruct the original signal (for
instance, to clean the measurements from noise);
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Sensor 157 Jayer size SRMSE Improvement w.r.t. Gaussian
F(z) neurons | of P €av €co Acav/€av(%) | A€co/€co(%)
Gaussian - 4 0.332 | 0.255 - -
1 trained 6 4 0.171 | 0.166 48 25
trained 8 4 0.220 | 0.214 34 16
Gaussian - 4 0.317 | 0.264 - -
2 trained 6 4 0.196 | 0.177 38 33
trained 8 4 0.196 | 0.186 38 30
Gaussian - 4 0.125 | 0.103 - -
3 trained 4 4 0.126 | 0.088 0 15
trained 8 4 0.100 | 0.087 20 15

T able 1: Approximation error (SRMSE) of network A, with H = 1.

4. by letting netw ork B predict the parameter ector P instead of 7 from
the input vector Q. Signal J(t) can then be reconstructed from P.

In all cases P is the main input or output of NWPM. Advantages and drawbacks
of NWPM are described in [4].
2.1. Performance Index

As a performance index for all NWN’s, we adopt the Standardize d R ot Mean
Square Err or(SRMSE):

Yot Sy ) = 9 1
= = here y=—— E E P (1)
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where P and M are, respectively, the number of samples in the training (or
validation) set and the mumber of netw ork outputs;yf is the j-th component

P
=1

of the p-th output vector Y'? in the training (or validation) set, while g7 is the
corresponding netw ork estimate.

T able 1 lists the SRMSE of netw ork A both alone €,,) and follow ed ly the a-
posteriori corrector (eco), for the case study, with Gaussian activation function
(the commonly used function which empirically provides best performance).

3. Training Activation Function

The need fem a-posteriori model corrector indicates  that the shap eof .J (t)
is far from optimal and definitely needs improvements. The performance of
different netw orks A mainly depend on hav well their activation function fits
the signal J(t). See [4] on how to choose the best NWN for NWPM.

In practice, none of the traditional functions is optimal and no other com-
monly used function would be significantly better under this respect. The only
w ayto improve model accuracy would be to increase the number of hidden
neurons, but this would increase the number of free parameters (size of P),
thus reducing the effectiveness of NWPM approach.
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A solution to the problem would be to design an ad-hoc activation function
to minimize || f(¢;)|| and therefore the average modeling error. Direct minimiza-
tion is not trivial, therefore we tried the new idea of “training” the activation
function, as described below.

By using the terminology and symbols proposed in [1], w efirst selected,
for A, a two-lagrs 1 x H x 1 WRBF-0(F (2))-0(lin) (in the old terminology,
an MLP with H hidden units with F (z), plus 1 output neuron with linear
activ ation, respectiely), for a total of 3H + 1 parameters:

y(@) =" (Hy D (21, 700,0);0,774, 64 2)

where the activation function F'(z) is defined by another tw o-layer X N x 1
WRBF-0(tanh)-0(lin) which is known to be a universal approximator:

F(z)= 7—{,3“ (Hga“h (z;éz,Wz,G);G, W3,®3) (3)

By substituting (3) in (2) we get a four-layers 1 x H x (NH) x H x 1 WRBF-
0(lin)-0(tanh)-0(lin)-0(lin), where input and output layers (1%¢ and 4**) coincide
with the MLP, while the inner layers (27¢ and 3"?) implement its activ ation
function.

This four-la yr NWN can be trained using a traditional bac kpropagation
rule [1, 2], with the same training set used for net w ork AOnce trained, the
parameters in (3) (namely, 27 and 3"¢ layer) are frozen and they are identical
for all signals, as they define the shape of a fized but trained activ ation func-
tion. The only parameters which remain free for each profile are the 3H + 1
parameters in (2) (namely, 1*¢ and 4" layer) which compose vector P.

It must be pointed out that, although that appears to be a traditional
four-la yer net w ork, in practice thevé inner layers are trained apart and, once
trained, their weigh ts are frozen and they are not part of the compact repre-
sentation P. Only the two outer layers are part of the NWPM approach and
their weigh ts are the elemeits of P.

T raining of the actiwtion function takes place in a slightly uncommon way:
the input and output layers are trained with the nominal values of 7, while the
tw o inner ly ers are trained with much smaller training coefficierts (namely, K
times low er, whereK is the size of the training set). The first specimen data
are applied to the netw ork, whih is trained for 200 epochs, then next specimen
is applied for another 200 epochs, etc., until all training specimen have been
applied. This process (on the whole training set) is then repeated a few times.
By doing so, the two outer layers can learn the shape of each profile in less than
200 epochs, while the tw o inner lyers require all the samples in the training
set (with 200 epochs each) to train.

As a consequence of such training, the inner layers slowly learn from all
the actual profiles the optimal shape which reduces the average appraximation
error to a minimum. After a sufficiently long training (as many & ~ 4 - 10°
epochs, but each epoch is very fast to compute, therefore the whole training
can last just a few minutes), the shape of the activ ation function has been
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Figure 3: a) Comparison of estimated signals for sensor 2. b) Trained F (z).

learned and is then frozen forever, to be later used to associate eac h profile
with is compact representation P. Forwhat con vergenceregards, the tw o
inner layers do have such a small learning coefficient that their convergence
is always guaranteed. Remember that this is the major difference betw een a
2-layers NWN with trainable actintion functions and a 4-layers NWN.

4. Performance and conclusions

T able 1 shavs that modeling error with the trained F' (z) reduces by about 35%
(average, without a-posteriori corrector). F urthermore the a-posteriori correc-
tor has less effects on performance, therefore it can be removed. Figure 3.a
compares measured and predicted signals for sensor 2, while fig. 3.b compares
the Gaussian and the trained activation functions.

This paper has proposed a method to successfully train the activation func-
tion in a class of neuro-wavelet parametric modeling problems. T raining has
significantly improved the modeling and classification performance for the pro-
posed case study and for some other industrial applications not reported here.

Acknowledgments

This work has been supported by Italian project MADESS II “Architectures and
VLSI devices for embedded neuro-fuzzy...”, con tract ASI-ARS 98.

References

[1] L.M. Reyneri, “Unification of Neural and Wavelet Net w orks andiBzy Systems”,
in IEEE Trans. on Neural Networks, Vol. 10, no. 4, July 1999, pp. 801-814.

[2] S.Haykin, “Neural Netw orks: A Comprehensie Foundation”, Mc Millan College
Publishing Company, New York, 1994.

[3] Q. Zhang: “Using Wavelet Net w orkin Non-parametric Estimation,” IEEE
T ransactions on Neunl Networks, Vol. 8, No. 2, pp. 227-236, March 1997.

[4] V. Colla, L.M. Reyneri, M. Sgarbi, “Neuro-Wavelet Characterization of Jominy
Profiles of Steels”, in Journal of Integrated Computer-Aided Engineering, 1999,
John Wiley & Sons, New York (NY). (to be printed)



