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Abstract. We describe the results of a research on the effect of weight-decay
(WD) in input selection methods based on the analysis of a trained multilayer
feedforward network. It was proposed by some authors to train the network with
WD before applying this type of methods. The influence of WD in sixteen
different input selection methods is empirically analyzed with a total of seven
classification problems. We show that the performance variation of the input
selection methods by introducing WD depends on the particular method. But for
some of them, the use of WD can deteriorate their efficiency. Furthermore, it
seems that WD improves the efficiency of the worst methods and deteriorates
the performance of the best ones. In that sense, it diminishes the differences
among different methods. We think that the use of weight-decay with this type
of input selection methods should be avoided because the results are not good
and also the use of weight-decay supposes a complication of the procedure.

1. Introduction.

A supervised neural network is trained with a set of examples of resolution of one
problem. So we can easily conclude that the selection of the training information is an
important issue. Moreover, in real world problems there is usually a large amount of
information that can be measured. But, not all the variables are equally useful, they
may be noisy, irrelevant, or redundant. Their importance is unknown a priori.
The problem of input selection consists in selecting a smaller subset of features from
a larger one of what we can call candidate features or inputs.
In the case of neural networks, by reducing the set of inputs we can reduce the size of
the network, the amount of data to process, the training time and increase the
generalization. In the bibliography, we can find several input selection methods for
the case of multilayer feedforward networks (MF). One classification among them is:

•  Methods based in the analysis of a trained MF neural network [1-12].
•  Methods based on the analysis of the training set, one example is [13].
•  Methods based on the analysis of other neural network architectures [14].

All the above methods allow obtaining an ordination of candidate inputs according to
its importance. But they do not provide a final subset of inputs because we do not
know how many inputs should be kept. Furthermore, the methods are different and
the ordinations are usually different. Their performance varies.
In this paper, we will focus on the above first group of methods. In order to apply
them, we should train at least one MF network with the full set of candidate inputs.
After, we should analyze the trained network to determine an ordination of inputs.
These methods are based on the principle that during training the network should
discover the important inputs and it should be reflected in the final network structure.
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Some authors [3] have proposed to apply the input selection methods to a network
trained with weight-decay (WD). At first sight, it seems reasonable because it is well
known that the effect of WD is to prune irrelevant inputs. The objective of this
research was to analyze the effect of WD training in input selection methods.
In the next section we present a brief description of some input selection methods and
also a methodology to analyze their performance.

2. Theory and Methodology.

2.1 Input selection methods.
The methods based on the analysis of a trained MF network normally define the
relevance of one input i, Si. One input is considered more important if its relevance is
larger. One way to calculate the relevance Si is to define the relevance sij for every
weight wij connecting the input unit i and hidden unit j. After that, the input relevance
can be calculated by summing for all j.
In the following, we will group the methods according to their basic idea, a more
complete description of them can be found in our previous paper [15].

First group.
Some criteria for defining weight relevance are based on direct weight magnitude. We
have used two methods in this group, one was proposed by Belue [1] (named BL2 in
the rest of the paper) and the other by Tetko [2] (named TEA).

Second group.
Other criteria of relevance are based on an estimation of the increment in the mean
square error when pruning the weight: Cibas [3] (CIB) and Tetko [2] (TEE).

Third group.
Other methods define the relevance by using the variance of weights wji connected to
an input i. A smaller variance means a lower relevance (the input behaves like a
threshold). The methods are in [4] (named DEV) and in [5] (named DR3).

Fourth group.
Some other criterions evaluate the contribution of one input to the outputs. They try to
take into account the values of the weights in the whole network structure. For
example [2] (named TEB) and [6] (named TEK).

Fifth group.
There are several methods, which use the sensitivity of the outputs with respect to one
input for defining its relevance. In this case, a higher sensitivity is assumed as a
higher relevance. The methods were proposed by Belue [1] (named BL1), Cloete [7]
(named CL), Priddy [8] (named PRI), Sano [9] (named SAN) and Deredy [5] (DR2)

Sixth group.
Others estimate the performance decrease when setting the input to a fix value. The
input relevance is considered larger as the performance decrement increases. They
were proposed by Utans [12] (UTA), Mao [10] (MAO) and LEE [11] (LEE).

2.2 Methodology.
In the following paragraphs we will explain several concepts which are useful to
understand the experimental results. An additional explanation can be found in [15].
As pointed out before, the input selection methods provide an ordination of inputs
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according to its presumed importance, but they do not provide the number of inputs
that should be retained in the final subset.
Let’s suppose, as an example, that we get the following ordination: {1,6,5,2,4,3,7}.
After that, we can obtain several subsets of inputs by successively removing the least
important input. For example, the first subset is obtained by removing input number
1, {2,3,4,5,6,7}, the next subset is {2,3,4,5,7} and the last subset of one input is {7}.
For every subset, we can obtain the mean performance of a classifier to see how good
the subset is. We apply the classifier to the problem using the inputs in the subset.
In our case, the classifier was MF, however its performance depends on the particular
weight initialization, so it is necessary to train several networks to obtain a mean
performance and an error in this mean. In our experiments, the minimum number of
trained networks for one subset was 10 and we use the percentage correct in the test.
After obtaining the performance of all subsets, we can find an optimal subset for each
method. The optimal subset should provide the best performance (percentage).
However, in the cases of two subsets with indistinguishable percentage, the optimal
subset is the one with lower number of inputs because the final network model is
simpler. It is useful to perform t-tests to see if two percentages are distinguishable,.
We can consider that the performance of one method consists of the percentage and
the number of inputs of its optimal subset.

3. Experimental results.

The main purpose of this research was to evaluate the effect of WD in the described
input selection methods.
We have applied the methods to 7 different classification problems. They are from the
UCI repository of machine learning databases: Liver Disorders (named BUPA in this
paper), Credit Approval (CREDIT), Heart Disease (HEART), Pima Indians Diabetes
(PIMA), Voting Records (VOTING) and Wisconsin Breast Cancer (WDBC). The
complete data and a full description can be found in the repository.
In all the problems we have included a first useless input generated at random inside
the interval [0,1]. We have also normalized the range of variability of every input into
the interval [0,1]. This is very important because the range influences the final value
of the input weights and therefore all the relevance measurements.
We need at least one trained network for each problem to apply the methods. Also for
the objective of this research (evaluate the effect of WD) we should train one network
with backpropagation and other with WD. We finally decided to train 10 networks for
each training algorithm with different initializations. We have applied the methods to
the 10 networks, obtained 10 different relevance measurements for each input and
method and calculated a final value, which was the mean of the 10 measurements.
The reason for this procedure is that the relevance values depend on the final trained
network and it can be biased by the initial weights if we only use one network.
The number of hidden units in the network and the weight-decay factor λ were
obtained by a trial and error procedure for every problem.
Following the methodology described in the above section we have obtained the
performance of every method (with and without WD), the results are in table 1.
In each row, we have the results of a method followed by the same method with the
use of WD. For example, method BL1 and method BL1 with weight-decay are in the
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first and second rows. In the columns we have the seven different databases, the
columns with header “%” contain the performance of the optimal subsets (percentage)
and the columns with the title “N” the number of inputs in the optimal subset.
Furthermore, with the shadows we tried to indicate the results of the comparison
between one method with and without WD, the best results have a shadow in the cell.
In the cases where the performances are indistinguishable (the percentages are
indistinguishable and the number of inputs is the same) there is no shadow.

Table 1. Performance differences between using or not WD in input selection methods.

BANDS BUPA CREDIT HEART PIMA VOTING WDBC

Method % N % N % N % N % N % N % N

BL1 66.5±1.2 18 69.5±0.2 5 88±0 1 79.1±0.9 8 77.0±0.2 5 94.9±0.1 9 99.6±0.2 12
& WD 68.6±1.0 12 65±2 5 88±0 1 79.1±0.9 8 77.0±0.2 5 95.6±0.5 6 99.6±0.2 12

BL2 70.6±0.7 5 67.4±1.6 4 89.4±0.2 8 81.3±0.8 10 77.0±0.3 3 95.9±0.2 12 97.7±1.7 11
& WD 68.6±1.0 12 66±2 6 88±0 1 79.1±0.9 8 77.0±0.2 5 95.6±0.5 6 99.6±0.2 12

CL 66.4±1.3 15 69.5±0.2 5 88±0 1 80±2 6 77.0±0.2 5 94.7±0.4 10 99.6±0.2 12

& WD 68.6±1.0 12 65±2 5 88±0 1 79.1±0.9 8 77.0±0.2 5 95.6±0.5 6 99.6±0.2 12

PRI 66.6±1.2 18 69.5±0.2 5 88±0 1 79.1±0.9 8 77.0±0.2 5 94.9±0.1 9 99.6±0.2 12
& WD 68.6±1.0 12 65±2 5 88±0 1 79.1±0.9 8 77.0±0.2 5 95.6±0.5 6 99.6±0.2 12

DEV 69.4±0.5 6 69.5±0.2 5 88±0 1 81.3±0.8 10 77.0±0.3 3 95.9±0.2 12 99.2±0.1 17
& WD 68.6±1.0 12 67.4±1.6 4 88±0 1 79.1±0.9 8 77.0±0.2 5 95.6±0.5 6 99.6±0.2 12

LEE 70.8±0.9 22 60.1±1.3 6 76.9±0.4 12 76.9±1.8 11 69.7±0.7 7 92.1±0.4 11 98.4±0.3 21

& WD 71.6±0.7 24 69.5±0.2 5 76.7±0.5 3 72±2 12 70.8±0.9 4 92.2±0.6 12 98.2±0.4 25

TEK 67.9±1.1 10 69.1±0.3 6 88±0 1 79.9±0.8 5 76.2±0.2 6 94.9±0.3 16 99.5±0.2 19
& WD 68.2±0.9 15 60.1±1.3 6 88±0 1 80.8±0.3 11 77.0±0.2 5 94±0 3 99.4±0.2 18

SAN 67.4±0.9 21 69.5±0.2 5 88±0 1 78±3 7 76.8±0.2 6 94.9±0.1 9 99.6±0.2 12
& WD 68.6±1.0 12 65±2 5 88±0 1 79.1±0.9 8 77.0±0.2 5 95.6±0.5 6 99.6±0.2 12

TEA 69.4±1.8 4 69.5±0.2 5 89.3±0.2 9 81.3±0.8 10 77.0±0.3 3 95.9±0.2 12 99.1±0.2 9

& WD 72.0±0.9 6 66±2 6 88±0 1 79.1±0.9 8 77.3±0.2 3 95.6±0.5 6 99.6±0.2 12

TEB 69.0±0.6 6 67.4±1.6 4 89.0±0.2 10 79.4±1.8 5 77.0±0.3 3 95±0.3 9 99.6±0.2 12
& WD 68.6±1.0 12 66±2 6 88±0 1 79.1±0.9 8 77.0±0.2 5 95.6±0.5 6 99.6±0.2 12

DR2 67.2±0.5 6 67.4±1.6 4 88.2±0.1 5 82.9±0.5 5 77.0±0.2 5 95.4±0.2 6 98.9±0.1 10
& WD 69.8±1.1 2 66±2 6 88±0 1 77±3 5 77.0±0.2 5 95.6±0.5 6 98.6±0.2 16

DR3 68.8±0.3 3 63.5±1.7 6 88.0±0.2 14 74.8±0.5 5 76.3±0.3 8 92.2±1.5 13 98.4±0.5 27

& WD 74.0±1.4 29 69±2 6 88±0 1 72±3 10 78.5±0.4 8 93.4±0.5 9 99.3±0.1 26

MAO 73.7±0.5 8 69.1±0.3 6 88.0±0.4 14 79.3±1.1 8 76.2±0.2 6 95.5±0.2 6 99.0±0.1 9
& WD 70.7±1.5 4 60.6±0.8 4 88±0 2 76.3±0.6 12 75.5±0.1 3 95.2±0.3 7 99.0±0.1 9

UTA 73.1±1.0 4 69.5±0.2 5 88.3±0.1 6 76±2 5 77.3±0.2 3 96±0 5 98.9±0.2 11
& WD 72.5±0.1 2 65±2 5 88±0 1 76.4±0.5 2 77.3±0.2 3 95.6±0.5 6 99.4±0.2 23

CIB 73.7±0.5 8 69.1±0.3 6 87.7±0.2 12 79.3±1.1 8 76.2±0.2 5 95.5±0.2 7 99.2±0.1 18

& WD 74.6±0.5 6 63.5±1.7 6 87.8±0.4 12 77±3 5 77.0±0.2 5 95.7±0.3 5 99.2±0.1 18

TEE --- -- 63.1±1.2 5 --- -- 76.2±0.5 7 70.8±0.9 5 93.7±0.2 16 99.5±0.1 29
& WD --- -- 68.3±0.4 6 --- -- 78.7±0.5 11 75.8±0.1 2 94±0 3 98.5±0.2 21
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The criterion to affirm that one performance is better is the one explained before. First
we consider the percentage, and in the cases of indistinguishable percentage (taking
into account the errors) a lower number of inputs means a better performance.
For example, in the results for the database BAND and the methods LEE and LEE
with WD the values are “%=70.8±0.9, NI=22” and “%=71.6±0.7, NI=24”. The
percentages are not distinguishable (taking into account the errors), so we have
considered that the performance of LEE (without WD) is better because the number
of inputs (22) is lower, its cell is shadowed.
By observing the results in table 1, we can see that there is not a clear improvement
by using WD, the results depend on the method and on the database. For instance, for
CIB we got an improvement by using WD in 5 of the 7 databases and it worked worse
in 1. However, for DR2 the situation is the opposite.
This is a serious drawback for the use of WD with input selection methods: it
supposes an additional complexity (to select the weight-decay factor, λ) and the
performance can be worse.
By analyzing carefully the results we were able to get an additional insight on what
WD provides. In a previous paper [15], we presented a comparison among this input
selection methods by using backpropagation as the training algorithm (without WD),
we were able to obtain an ordination according to its performance, the result was:

UTA>TEA>BL2>DEV>TEB=DR2=MAO>CL>BL1>PRI=SAN>CIB=TEE>TEK>DR3>LEE

In table 2, we have presented the methods ordered as above, in the first column we
have UTA (the best) and in the last LEE. In the rows, we can see the number of
databases where the method performed better, equal or worse, by incorporating WD.

Furthermore, we have shadowed the cells where the use of WD supposes a clear
modification in the efficiency of the method.

Table 2. Performance comparison between using or not WD, number of databases.

UTA TEA BL2 DEV TEB DR2 MAO CL BL1 PRI SAN CIB TEE TEK DR3 LEE

Better WD 3 3 2 2 1 1 1 2 2 2 3 4 4 4 6 3

Equal 1 1 1 2 1 2 1 3 4 4 2 2 0 0 0 0

Worse WD 3 3 4 3 5 4 5 2 1 1 2 1 1 3 1 4

In the first two methods UTA and TEA, the situation is balanced. In the followings
BL2, TEB, DR2 and MAO there is a clear deterioration in the performance because of
WD. In the next methods, CL, BL1 and PRI, the influence is not appreciable, the
results with most of the databases are equal. Finally, in the worst methods (CIB, TEE,
DR3), there is a clear improvement because of WD.
It seems that the use of weight-decay improves the performance of the worst input
selection methods, deteriorates the performance of the best ones and does not affect
the rest. In that sense, its use diminishes the differences among different methods.

4. Conclusions.
We have presented a research on the combination of weight-decay and input selection
methods based on the analysis of a trained multilayer feedforward network. The
influence of weight-decay in sixteen different input selection methods was
empirically analyzed with a total of seven classification problems. We showed that
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the use of weight-decay can deteriorate the efficiency of a method. Furthermore, it
seems that weight-decay improves the performance of the worst input selection
methods and deteriorate the performance of the best ones. In that sense, it diminishes
the differences among different methods. We think that weight-decay should not be
used for this particular task of input selection.

References.
1. Belue, L.M., Bauer, K.W.: "Determining input features for multilayer

perceptrons". Neurocomputing, vol. 7, n. 2, pp. 111-121, 1995.
2. Tetko, I.V., et alt: Neural network studies. 2. Variable selection. Journal of

Chemical Information and Computer Sciences, vol. 36, n. 4, pp. 794-803, 1996.
3. Cibas, T., Soulié, F.F., Gallinari, P., Raudys, S.: Variable selection with neural

networks. Neurocomputing, vol. 12, pp. 223-248, 1996.
4. Devena, L.: Automatic selection of the most relevant features to recognize

objects. Proceedings of the International Conference on Artificial Neural
Networks, vol.2, pp.1113-1116, 1994.

5. El-Deredy, W., Branston, N.M.: Identification of relevant features in HMR
tumor spectra using neural networks. Proceedings of the 4th International
Conference on Artificial Neural Networks, pp. 454-458, 1995.

6. Tetko, I.V., Tanchuk, V.Y., Luik, A.I.: Simple heuristic methods for input
parameter estimation in neural networks. Proceedings of the IEEE International
Conference on Neural Networks, vol. 1, pp. 376-380, 1994.

7. Engelbrecht, AP., Cloete, I.: A sensitivity analysis algorithm for pruning
feedforward neural networks. Proceedings of the International Conference on
Neural Networks, vol. 2, pp. 1274-1277, 1996.

8. Priddy, K.L., et alt: Bayesian selection of important features for feedforward
neural networks. Neurocomputing, vol. 5, n. 2&3, pp. 91-103, 1993.

9. Sano, H., et alt: A method of analyzing information represented in neural
networks. Proceedings of 1993 International Joint Conference on Neural
Networks, pp. 2719-2722, 1993.

10. Mao, J., Mohiuddin, K., Jain, A.K.: Parsimonious network design and feature
selection through node pruning. Proceedings of the 12th IAPR International
Conference on Pattern Recognition, vol. 2, pp. 622-624, 1994.

11. Lee, H., et alt: Selection procedures for redundant inputs in neural networks.
Proc. of the World Congress on Neural Networks, vol. 1, pp. 300-303, 1993.

12. Utans, J., Moody, J., et alt: Input variable selection for neural networks:
Application to predicting the U.S. business cycle. Proc. of IEEE/IAFE
Computational Intelligence for Financial Engineering, pp. 118-122, 1995.

13. Battiti, R.: Using mutual information for selecting features in supervised neural
net learning. IEEE Trans. on Neural Networks, vol. 5, n. 4, pp. 537-550, 1994.

14. Watzel, R., Meyer-Bäse, A., et alt: Identification of irrelevant features in
phoneme recognition with radial basis classifiers. Proceedings of 1994
International Symposium on Artificial Neural Networks, pp. 507-512, 1994.

15. Fernández, M., Hernández, C.: Input selection by Multilayer Feedforward
trained networks. Proceedings of the 1999 IEEE International Joint Conference
on Neural Networks, pp. 1834-1839.

 D-Facto public., ISBN 2-930307-00-5, pp. 135-140B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)


