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Abstract. We study the topographic development of receptive �elds

by simulating the con tinuum�eld equations with learning on a tw o-

dimensional lattice. The observed plasticity reveals a columnar organisa-

tion with spatial clustering of receptive �eld centres, and the development

of orien ted receptiv e �elds, if certain conditions ar met.

1. Introduction

The development of ordered receptive �elds (RFs) is a biological phenomenon,

which depends on a sequence of on to-geneticmechanisms to establish topo-

graphic connections between layers of neurons. It has been shown that the

established map is able to reorganise its RFs, if the corresponding sensory area

receiv es considerable more stimulation during a longer period, or is removed due

to ablation. The connectivity pattern from the retina to the LGN/tectum and

from there to the visual cortex has been subject both to physiological studies

[3, 4, 6, 7, 9, 10, 12, 13, 16] and theoretical analysis [1, 2, 5, 8, 11, 14, 15, 17]. Al-

though the development of orientation preference, occular speci�ty and higher

order visual feature selectivity may additionally constrain the development of

the precise retinotopic layout, we limit our study, due to complexity constrains,

to the development of a tw o-dimensional topographic RF structure.Mapping

studies have revealed a random-walk lik e distribution of RF centres of adjacent

cortical neurons. Whether this stochastic gradient is accompanied by a pos-

tulated systematic gradient with a speci�c mode has not been fully clari�ed.

T o furtherinvestigate theself-organisation of columnar structurew e will use

numerical analysis of nonlinear dynamical systems.

Here we will follow the theoretical analysis of continuum neural �eld theory

using simulations to assess the self-organisation properties of the dynamical

system. Next, the system equations will be presented, follow ed b y a discussion

of the evolv ed retinotopic and orientation maps. The paper concludes with a

discussion of the observed plasticity phenomenon.

�
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2. Algorithm

The learning algorithm for the development of a topographic map can be di-

vided into tw ostages: an initial recurrent phase, go vernedby a short time

scale for the fast cortical adaption to a new stimulus, and a second phase with

a slow er time scale for changing the weights to the retinal stimulus. The con-

tinuum neural �eld can be interpreted as a model for the average behaviour of

large ensembles of cortical neurons allowing a macroscopic description of the

system in terms of an activation variable u . The learning mechanism adapts

to the environment represented by the stimulus set, thereby revealing an emer-

gent order parameter of the nonlinear system. Since both mechanisms act on

di�erent time scales, they can be e�ectively decoupled, allowing the results of

the fast dynamic �eld process to be regarded as a stationary state for the slow

learning process.

2.1. The neural �eld

The dynamics of the activation variable u(z,t) is given by the nonlinear integro-

di�erential equation:

� _u(z; t) = �u(z; t)� h+

Z



w(z; z0)�(u(z; t))dz0 +

Z
s(z; t)a(z � z

0)dz (1)

u(z; t) is the membrane potential at cortical point z giv en a stimulus on the

retinal plane relayed by the smoothing function a(z � z
0) and the cells RF

weights s(z; t) to the cortical plane. The function h models recurrent feedback

by tonic disinhibition, thereby allowing rich cortical RF properties to emerge.

The function w de�nes an isotropic weight kernel which varies with weight and

has been modelled in the simulations as a di�erence of tw o Gaussian kernels. �

de�nes a time-constant and the function � is set to a step-function. The RFs

are assumed to be initialised to random values and the parameters should be

appropriately chosen to ensure stability of the system in response to a�erent

stimulation.

2.2. The learning equation

The a�erent weights s(z; t) were changed according to a Hebbian learning equa-

tion with a slow er time constant than the �eld dynamics to ensure the proper

dev elopment of a topographically organised structure:

� _s(z; t) = �s(z; t) + �a(z � z
0))�[u(z; t)] (2)

The weigh tss are c hanged according to the correlation betw een the mem-

brane potential u(z; t), which evolved during the lateral-inhibition type process,

and the sensoric input smoothed by the spread function a. To allo w the devel-

oping of orientation selective RFs, the weight deca y term has been replaced by

a weight normalisation term.
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3. Simulations

Figure 1 shows a sequence of activation patterns following the stimulation of

the sensory plane using randomly distributed binary point stimuli of size 4x4.

The time constant was set to 0:1 to achiev e fast convergence of the system to

the present stimulus. Shortly after onset of the new stimulus, the old stable

focus vanishes and is replaced by a new stable equilibrium. A notable e�ect can

be observed whenever the new stimulus lies in the RF of the previous activity

bubble of the cortical layer: the bubble moves along the cortical surface and

relaxes near the new input position.

Figure 1: Sequence of bubble activations on the cortical surfac eof size 20x20

after stimulation with randomly distributed point stimuli from the retina (size

64x64). For each stimulus presentation �ve time-steps of the relaxation into a

stable equilibrium are shown. The next cycle, indic atedby black marks, starts

with a randomly positioned new stimulus. Note the apparent movement of the

bubble if the new stimulus falls in the RF of the preceding activation.

Figure 2 sho ws the distribution of the topographically ordered RFs after

100 simulation steps of the complete learning procedure. The dark spots, which

mark the centres of the RFs, show the spatial clustering pattern, rev ealing a

discontinuous advancement of the centres betw een clusters and some rare cases

of neurons with multiple RF centres.

T o explore the properties of the dynamical system on a more complex fea-

ture set, additional simulation w ereperformed using small orien tedbars as

sensory input patterns. T oallo w the development of orientation selectivit y,

the learning equations had to be modi�ed slightly b y inclusion of a Gaussian

weight normalisation term. Figure 3 shows the oriented RFs of 1600 cortical

neurons, which developed following the presentation of 10.000 randomly placed

and oriented stimuli from a retina of size 32x32.
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Figure 2: left: Topographically ordered RFs, note the clustering of RF centres

into discrete gr oups and the sudden jumps across the simulated cortical surface.

Each of the 400 squares shows the weights of one cortic al neuron to the retinal

plane of size 64x64; right: enlar ged RFs for a 8x8 region.

Figure 3: Orientation selective RFs on a model cortex of size 40x40, the size

of the r etina is32x32
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4. Conclusion

We have studied the topographic development of RFs by simulating the contin-

uum �eld equations with learning on a tw o-dimensional lattice. It was shown

that the emergent clustering phenomenon, which was observed previously for

the one dimensional case [14], also holds for the tw o-dimensionalcase, and

produces a patch-lik e, discontinuous structure of receptive �eld variation. Fur-

thermore, we have shown that by replacing the weight-deca y term of Equation

(2) b y a Gaussian weigh t normalisation term, the netw ork can develop oriented

RFs. The modi�cation of the learning equation was necessary to produce ori-

en ted RFs, resembling biological visual RFs, since the original formulation of

the learning equation with weigh t deca y did not account for normalisation or

weight redistribution e�ects. Biological neurones often show spatial shapes

similar to Gabor functions, with an elongated excitatory centre surrounded by

inhibitory surrounds. Closer inspection of the oriented RFs of the mapping re-

vealed a similar RF organisation with inhibitory side-lobes next to the central

excitatory region.

The results obtained from the simulation and presented in the previous

section agree with the asymptotic solution which can be obtained for the dy-

namic and learning equations (1) and (2), using the analysis of [15], in the

unstable case. The solution for a map of a one dimensional retina into a one

dimensional cortex was already been simulated in [14], with a 'double staircase'

solution obtained, in which the RFs of cortical neurons are successive intervals

of the retinal line, jumping from one interval to the next one at a succession of

discrete points. This can be extended to the case of a map of a tw o dimensional

retina in to a tw odimensional cortex, with a similar 'double staircase' struc-

ture. It is this structure which is apparent in �gure 2. The tw o-dimensional

simulations indicate that the analytic solutions obtainable for (1) and (2) are

attainable by simulation in the simpler cases.

In order to obtain orien tation selectivit y it is necessary to consider the

case of an unstable map from three dimensional inputs (on a tw o dimensional

retina) into a tw o dimensional cortex.The extra dimension of the input space

is provided by considering orientations of bars of light instead of the random

spots used in the simulation of section 3; the resulting solution of the learning

equations (1) and (2) for bar inputs is a double staircase form, now with the

third input dimension squashed in to a linear map inside eac h square of the

cortical double staircase.

Analytical and numerical considerations lead to tw oconstraints, to allo w

the formation of orien tationselectivit y from randomly placed and randomly

orien tedretinal stimuli. First, the sum of the weights of eac h cortical unit

must be kept approximately equal to the other neurones, to allow the uniform

dev elopment of orien tedRFs. F urthermore, since the RFs dev elopa topo-

graphic ordering, the w eigh tnormalisation term should have Gaussian form,

cen tered onthe centre of the RFs. This Gaussian weigh t normalisation term

allows the development of inhibitory side-lobes similar to the RF-structure of

visual cortical neurons.
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