ESANN'2000 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2000, D-Facto public., ISBN 2-930307-00-5, pp. 227-232

Neurocontrol of a Binary Distillation Column

M. A. Torres*, M. E. Pardo**, J. M. Pupo*, L. Boquete***,
R. Barea***, L. M. Bergasa ***

*Informatics Department. F. Electric Engineering, Cuba
**Automatic Control, F. Electric Engineering, U. de Oriente, Cuba
***Electronics Department. Alcala University. Spain
boquete@depeca.alcala.es

Abstract. This paper deals with the control of a methanol-water distillation
column using neural networks, setting up a multiloop system. The neural network
used is a multi-layer perceptron type, trained off line by a gradient descent
algorithm. Results show an improvement on the use of an algorithm based on a
classic controller such as PID

1. Introduction

Neural networks, due to their ability to learn and approximate any nonlinear function
defined on a compact set, may be a powerful tool in the development of control
systems [1]. In some applications conventional controllers, such as the PID, have been
widely used and perform well, but when the process to be controlled is complex or has
nonlinearities, neural networks might be used to improve the effectiveness of the
control process.

The aim of a plant control system is to act on the inputs in such a way as to bring the
output to certain desired values. The use of neural networks in control has been the
subject of several reports, for example [2] and [3].

In this paper a neurocontrol system is set up to control product concentrations in the
upper and lower parts of a methanol-water distillation column. A comparison is made
between the results obtained with neurocontrol of the column and with PI type
regulators using different behaviour indices such as the ITAE (integral time absolute
error) and the establishment time.

2. Brief description of the distillation column

The distillation column is a strong-interaction multivariable system where the load
perturbations (feed flow) have a significant influence on system response. This
distillation column separates a mixture of methanol and water into two relatively pure
products; it is fitted with a partial condenser and reboiler as shown in figure 1. The aim
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Figure 1. Distillation column

of the control operation is to maintain concentrations in the upper part (Xd) and lower
part (Xb) at certain desired values, despite the strong perturbations, mainly brought
about by the loading of the product (F) with which the column is fed. Achieving this
aim involves operating on the return flow of the distilled product to the column (LR)
and also the steam flow (Gv) produced in the lower part of the column. Wood and
Berry [4] obtained the following behavioural model for the system:
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The rated values of the variables involved in the model are: Xd= 96.25 % mol,
Xb=0.5% mol; LR=1.95 lib/min. Gv=1.71 lib/min. and F=2.45 lib/min.

A similar work was made for Uria del Castillo, Brizuela and Lamana [5] that show a
predictive scheme for controlling the compositions of the top and bottom product of a
three-component distillation column. They present a nonlinear model of the process for
the prediction of future outputs, set up with a feedforward neural network. An analysis
is made of the column performance under different perturbations using various
alternatives of predictive control strategy. The behaviour of the system is compared to
that of a plant controlled by a PI regulator.

3. Control architecture
Connectionist systems are widely used for the identification and control of dynamic

systems due to their ability to approximate any non-linear function to a predetermined
error, this learning being effected on the basis of input-output examples.
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Figure 2. Control architecture

When training a neural network, within a control architecture, the main question is how
to adjust network coefficients so that the control error (difference between real and
desired outputs) is brought down to acceptable levels. The most widely used of all the
main neural control architectures, is perhaps the inverse control scheme: a neural
network is set up in series with the plant to be controlled, the aim being to make the
transfer function the inverse of the physical system. To achieve this objective the model
of Psaltis ef al. can be used [6] -Indirect Learning Architecture-. In this model a neural
network identifies the plant inverse model and the network itself is copied so that it acts
as neurocontroller. This same idea is used by [7] but using a single network (half the
number of neurons and synaptic connections). Other possibilities might be to set up a
neural network in parallel with the plant (neuroidentifier) and use it as a path to
propagate the control error to the neurocontroller [8][9]. Variants of this idea might be
to use weight perturbation [10], or the fact that the Jacobian of the plant to be
controlled can be found out [11][12].

In this work the architecture of figure 2 is used. It is also an inverse control neural
model in which the neural network inputs are the desired output (Xd‘(k) and Xb%(k))
and the errors e(k) and e(k-1) (it is therefore a recurrent network type Tapped Delay
Line).

If we consider for example the control loop of the concentration in the upper part of
the column, the neurocontroller output has to generate the control signal (LR(k)). To
enable it to carry out this function, a random set of training data is generated (250
points) for values of the signal LR%(k) together with another random set of desired
values (Xd‘(k)), all falling within the plant’s operational range, of course. This static
set serves for off-line training of the network, the error function to be minimised being:

Ey(k) =4 LRY (k) —LRN (k))2
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Being LRN(k) the output of the upper neural network (NN,). In the ideal case in which
E, =0, then the network sets up the system controller perfectly, providing that the set
of learning data covers the whole dynamic operational range of the distillation column.
The same process is applied to the control loop of the lower part of the distillation
column.

For each control loop a multi-layer perceptron network has been used, with hyperbolic
tangent type functions, in a 3 input architecture, 30 neurons in the hidden layer and 1
output neuron, the synaptic connections being adjusted by the gradient descent
algorithm
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Figure 3. Neural control response Figure 4. PI response

4. Results

The control system has been tested on the assumption that the flow of the product
feeding the column (F) varies at the ratio of 0.34 lib/min, and with this change, the aim
is to keep concentrations in the upper part (Xd) and lower part (Xb) within the rated
values. Figure (3) shows the percentage variation of said concentrations with respect
to the rated value. It can be seen that after a transient, a steady state condition is
reached in a time of about 60 minutes.

5. Comparison of results

In this section a comparison is made of the results obtained from the neurocontrol
control system as described above and those obtained with PID type regulators. A
multiloop control system using PI type controllers has also been set up for the
distillation column, the best results being those shown in figure 4. The following
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parameters are used for comparing both methods: ITAE, establishment time (ts),
maximum absolute deviation (dma) and the error. Table I shows the results.

The table below shows the results of the behaviour indices ITAE(Integral Time
Absolute Error), establishment time (ts) (min) and maximum absolute deviation (dma)
(mol %) for the regulators studied. All the values of these indicators were obtained by
considering each response to be transitory from its start until entering the area of 0.05
mol % for each variable controlled. The ITAE value shown in the table is the sum of
the Xd variable and Xb variable(total area under the curve for each variable controlled)

Table I. Comparison of results

Indices PI Neural Control
ITAE 908.8 157.69

Error

Xd 0 0.00993

Xb 0 -0.0024

ts 104 40

dma(Xd) 0.1036 0.85

dma(Xb) 0.62 0.6368

It can be seen that a multiloop PI regulator shows very high establishment times and
also high values for the ITAE criterion for load changes. The neural regulator shows
very small errors in a steady state; the ITAE value and the establishment time for load
changes are the best of all results obtained; the absolute maximum deviation, however,
is relatively high.

6. Conclusions

A neurocontrol system has been set up for a binary distillation column using neural
networks trained off line. A comparison of the results with a PI-based controller of
otherwise similar characteristics shows that the plant response is improved, particulary
in terms of the ITAE parameter and the establishment time. Work is currently
underway on setting up an adaptive control system with a single RBF type neural
network (Radial Basis Function) to compare both neural control techniques and put into
practice the one showing the best results.
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