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Abstract

A parametric procedure for the blind inversion of nonlinear channds is proposed, based on a
recent method of blind source separation in nonlinear mixtures. Experiments show that the
proposed algorithms perform efficiently, even in the presence of hard distortion. The method,
based on the minimisation of the output mutua information, needs the knowledge of log-
derivative of input distribution (the so-called score function). Each agorithm consists of three
adaptive blocks: one devoted to adaptive estimation of the score function, and two other blocks
estimating the inverses of the linear and nonlinear parts of the channel, (quasi-)optimally
adapted using the estimated score functions. This paper is mainly concerned by the nonlinear
part, for which we propose two parametric models, the first based on a polynomial model and
the second on a neurd network, while[12, 13] proposed nonparametric approaches.

1 Introduction

When linear models fail, nonlinear models appear to be powerful tools for modelling
practical situations. Many researches have been done in the identification and/or the
inversion of nonlinear systems. These assume that both the input and the output of the
distortion are available, and are based on higher-order input/output cross-correation
[2] or on the application of the Bussgang and Prices theorems [3,8] for nonlinear
systems with Gaussian inputs. However, in area world situation, one often does not
have access to the digtortion input. In this case, the blind identification of the
nonlinearity becomes the only way to solve the problem. This paper is concerned by a
particular class of nonlinear systems, composed by a linear subsystem followed by a
memoryless nonlinear distortion (Figure 1). This class of nonlinear systems, also
known as Wiener systems, is a nice and mathematically attracting model, but also a
actual model used in various areas, such as hiology [6], industry [1], sociology and
psychology (see also [7] and the references therein). Despite its interest, today, there
does not exist completely blind procedure for inverting such systems.
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Figure 1. The unknown nonlinear convolution system (left) and the proposed
inversion structure (right).
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2 Model and assumptions

We suppose that the input of the system S={(t)}is an unknown non-Gaussian
independent and identically distributed (i.i.d.) process, and that subsystems h, f are
respectively a linear filter and a memoryless nonlinear function, both unknown and
invertible. We would like to estimate s(t) by only observing the system’s output. This
implies the blind estimation of the inverse structure (Figure 1), composed of similar
subsystems. a memoryless nonlinear function g and alinear filter w. Such a system is
known as a Hammergtein system. Let s and e be the vectors of infinite dimension
defined from the processes S={ §(t)} and E={ e(t)} respectively, whose t-th entry is (t)
or e(t). The unknown input-output transfert can be written as:

e= f(Hs) D
where: H:%. ht+1) h) he-1) .0 @
0. ht+2) h(t+1) hE) .0
i 0
G- 0

is a Toeplitz matrix of infinite dimension which represents the action of the filter h to
the signal s(t). The matrix H is non-singular provided that the filter hisinvertible, i.e.
satisfies h*Ch = hCh* = &, where &yisthe Dirac impulse at t = 0.

Equation (1) corresponds to a postnonlinear (pnl) mode [12]. This model has been
recently studied in nonlinear source separation, but only for a finite dimensional case.
In fact, with the above parametrization, the i.i.d. nature of s(t) implies the spatial
independence of the components of the infinite vector s. Similarly, the output of the
inversion structure can be writteny =wx with x(t)= g(e(t)). Following [12,13] the

inverse system (g, w) can be estimated by minimizing the output mutual information,
i.e. spatial independence of y which is equivalent to thei.i.d. nature of y(t).

3 Cost function

The mutual information of arandom vector of dimension n, defined by:
1(2)=S H(z)-H(z.2...2) )

is extended to a vector of infinite dimension, using the notion of entropy rates of
stationary stochastic process [4]:

1(2)=tim—— EZH (2t)) - H (2-T)... Z(T))E: H(zr)-H(z) (4)

where 1 is arbitrary due to the sationarity assumption. We shal notice that 1(2) is
always positive and vanishes iff Z isi.i.d. Now, since Sis stationary, and since h and
w are time-invariant filters, then Yisalso stationary, and I(Y) is defined by:

1(v)=H(y({r)-H() ()
Using the Lemma 1 of [13], equation (5) becomes:

H(Y)=H (X)+2_1njjn|og‘;z:w(t)e“"

do (6)
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Moreover, sSince x(t) = g(e(t)) and e =¢ft) is Sationary:
H(X) -Ilm—EP (e(=T)....e(T)) + ZE[Iogg (elt) ]D HlE +Ellogg' )] (7
Combining (6) and (7) in (5) leadsfinally to:

1Y) = H(Y(e) - [ "log 3 witke*|d6 -~ Eliog ()] - Hl ] ®

4 Theoretical derivation of the inversion algorithm

To derive the optimization algorithm, we need the derivatives of I(Y) (8) with respect
to the parameters of the linear part w and of the nonlinear function g.

4.1 Linear subsystem

The linear subsystem is well parameterised by the coefficients of the filter w. The
derivative of I(Y) with respect to the coefficient w(t), corresponding to the t-th lag, is
easily computed:

% = -E[x(r —t)wy(,)(y(r))] ~w(-t) ©
It leads to the following gradient descent algorithm (see [13] for details):

W w+ u{vy.wy(y) + 5} *w 4o

4.2 Nonlinear subsystem

For this subsystem, we propose two different models for the function g. Both methods
are parametric, the first is based on a polynomial model of g, and the second on a
multilayer perceptrons.

4.2.1 Polynomial parameterization
Modelling g with a N-degree polynomial leadsto:
ol)=3 ™ (1)

n=

The gradient descent agorithm for g requires the derivatives of 1(Y) (8) with respect
to the coefficients a, of the polynomial. The derivatives of the right-side terms of (5)
are

d = —EBU t)e(r ) E (12)

IH(Y) _ ) -2
Jda, %z\ " 1)e E P” 1)e(r
Combining (12) and (13) leads to:

ﬁgl—g) =-E @"y(y(r));z:W(t)e(r -t %— E%ﬁ (n-1aelr)" %1(,0 . 1)e(r)pz§ (14)

and
(13)
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Equation (14) is the gradient of 1(Y) with respect to polynomial coefficients a,, and
will be used to provide a gradient descent dgorithm for estimating g.

4.2.2 Neur al network parametrization
In this subsection, we modd g using a multilayer perceptron with one hidden layer:

glm,n,6,u] = S mo(nu-6,) (15)

The gradient descent algorithm of g requires the derivatives of I(Y) (8) with respect
the network coefficients, m, n and &

afy)_ g na’(n ult)- Gp) O o nu L (16
ESnz. il E%"v g ot -0
E%n tn,o” (n,u(t)-6,)+o'(n, u(t)_gp))g
a P > 1"1"00\“() 6) g (17)
o 0
E%;Uy Zwkm ut - k)o' (n u(t gp)B
ay) _ g mnohu)-e,) 8 .o moliogs )] (8
26, _EEZ o (- 9)5 Ew,( Zwk o' (nu(t - k) GD)B (18)

Equations (16, 17, 18) are the gradients of 1(Y) with respect to network coefficients
and will be used for deriving a gradient descent algorithm of g.

5 Experimental results

In order to prove the efficiency of the previous algorithms, we simulate a difficult
situation, where the input sequence s(t) is an i.i.d. random sequence, filtered by a
non-minimum phase FIR filter h=[-0.082, 0, -0.1793, 0, 0.6579, 0, 0.1793, 0, -0.082]
and followed by the nonlinear digtortion f(u) = 0.1ut+tanh (5u) (see figure 2). Note
especialy on Fig. 2-right, the saturation due to the function tanh(.). On the frequency
response of h, shown in figure 3, we can see that h anon-minimum phase filter.
The algorithm was trained with a sample size of T = 1000. The length of the impulse
response of w is set to 21 with equal length for the causal and anti-causal parts.
Estimation results, shown in figures 4 and 5, prove the efficiency of the two
algorithms, with parametric, either polynomia or neural, models for estimating the
inverse of nonlinear function f.
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Figure 3. Frequency domain response and zeros of h.
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Figure 4. Frequency domain response of w, estimation of the inverse of h (l€ft).
Estimated inverse of f based on a 10-degree polynomial modd (right).

The performance can be directly measured with S/N = E[y2 (t)]/E[(s(t) - y(t))z] , the
output S/N, where N is the error power and S is the estimated signa power. After
adequate processing (delaying and re-scaling of y(t)), one obtains S/N = +18dB with
both polynomia and neural models.

6 Conclusions

In this paper, two blind parametric procedures for the inverson of a nonlinear channel
(Wiener system) were proposed. Contrary to other blind identification procedures, the
system input is not assumed to be Gaussian. If the input is not iid, but is a linear
filtering of an iid noise (the so-called innovation), the output provides the innovation.
The redtitution of the input then requires more information, for instance the
distribution or covariance matrix. Moreover, the nonlinear subsystem is unknown and
cannot be directly estimated because its input is not available. The inversion
procedure, in both cases, is based on the minimization of the mutual information rate
of the inverse system output. The estimation of g is done according to a parametric
model, using either a polynomial model or a neural network. Both models leads to
good results, even in difficult situations (hard nonlinearity and non minimum phase
filter).
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Figure 5. On the |€ft, estimated inverse of h: w frequency domain response. On the
right, estimated inverse of f using a multiplayer perceptron with 6 neurons in the
hidden layer: x(t) vs. e(t)
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