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Abstract. The neocognitron network is analysed from the point of

view of the contribution of the di�erent layers to the �nal classi�cation.

A variation to the neocognitron which gives improved performance is

suggested. This variant combines the low level feature extraction capa-

bilities of the initial layers with alternative classi�ers such as LVQ and

Class Based Means Clustering. This is shown to give performance which

is superior to the either of those classi�ers acting on their own, and to

the neocognitron in its standard form on two di�erent instances of the

letter recognition problem.

1 Introduction

An arti�cial neural network called \neocognitron" was designed in the begin-
ning of 80's [5]. Since then it has undergone several improvements both by
the original developers [2], [3], and other researchers [6]. The network has a
hierarchical structure and it was originally designed for recognition of hand-
written digits and letters. The structure of the network is, however, suitable
for a number of di�erent applications.

We are interested in an application that involves the classi�cation of med-
ical signals [7], using the neocognitron as one of the blocks in the processing
chain. This has led to an investigation of how the di�erent parts of the network
contribute to the �nal recognition performance. To do so, the original task of
recognition of handwritten digits was used. By using the values of all the pa-
rameters of the network as published in the previous work [2], [6], a comparison
to the original network could be made.

It should be noted, that this work is related to the version of the neocog-
nitron as described in [2], as this version is the most suitable for the medical
application. There are more variants of the network which may give di�er-
ent results. This paper concentrates on the analysis of the contribution of the
di�erent layers to the �nal performance of the original network.

2 The Necognitron

The structure of the neocognitron network can be seen in �gure 1. The network
consists of one input layer, four processing layers and one output layer. Each
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Figure 1: State of the network after propagation of the picture of the digit \4".
The �gure shows just a few selected planes from each layer.

processing layers can be further divided into two sub-layers named \S" and
\C". Each sub-layer consists of several planes, square areas of neurons. In
�gure 1, the output of one neuron is represented by a single dot. The darker
the point, the higher the output of the neuron. The number of planes and their
sizes are di�erent for each of the sub-layers.

Each neuron is connected to only a small square area of some of the selected
planes of the previous layer. The size of this area is typically 3x3, 5x5 or 7x7
neurons. This square area shifts in parallel with the position of the target
neuron, thus preserving topographical information between layers. All the
neurons in a plane share the same set of weights. Sub-layer S contains the
so called feature extracting cells. All the cells in a single plane are specially
adapted to detect the presence of a particular feature in their input area. For
example, neurons of the topmost plane detect small horizontal lines.

The connecting rule of sub-layers C is the same, but they play a di�erent
role. They \blur" the information received from the feature extracting cells to
make the network more invariant to distortion of the input examples. Their
weights are �xed and set accordingly.

Globally, the network is hierarchical. The �rst layer extracts very simple
features like small lines of di�erent orientations. The next layers extract fea-
tures of increasing complexity. Features for the di�erent layers are pre-de�ned,
and they are not created or modi�ed by training, so training examples are not
required for the neocognitron. A few examples of features for the di�erent lay-
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Figure 2: Examples of training features for di�erent layers of the neocognitron

ers are shown in �gure 2. The features are shown as they would appear in the
input layer.

The size of planes in the last C sub-layer is only 1x1. There are 10 planes
in this sub-layer, one plane per class. Here the classi�cation output of the
neocognitron is represented by the plane with the highest output.

After the last layer, an output layer has been added. This layer is not
present in the original network [2]. This layer has the same number of planes
as the last C sub-layer and its only role is to propagate only the plane with the
highest output and to suppress the outputs of the other planes.

3 The Alternative Approach for Analysis

The classical approach is to evaluate the results obtained from the �nal layer
of the neocognitron. As of yet there has been no attempt to investigate the
performance of the intermediate layers.

Every sub-layer of the neocognitron can be seen as an independent neural
network transforming its input vector space into an output vector space, which
is later an input for the following layer. The network comprises of 8 sub-layers,
one input layer (e.i. the vector space of the original input examples before any
processing), and an output layer, a total of 10 vector spaces. It was decided
to independently investigate each vector space by the application of standard
classi�cation algorithms.

As the S sub-layers primarily extract pre-de�ned features, these can also
treated as feature spaces. By analysing the extraction of features in di�erent
layers we can explore the components that contribute to the formation of a
\better" vector (or feature) space which can be more eÆciently used for clas-
sifying the input examples.

To test these spaces two di�erent classi�cation methods were used. The
�rst was Class Based Means Clustering (MC), in which for every class, a rep-
resentative vector was calculated as an average of all the training examples.
The testing examples were then classi�ed according to the nearest center using
Euclidian distance.

The second method used was Learning Vector Quantisation (LVQ) [4]. This
is a well known neural network with more then one representative vector per
class. The network is trained using supervised training. For details see [4].
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Figure 3: Performance on a layer by layer basis for set 11k

4 Training and testing sets

For testing the neocognitron and for training our evaluating algorithms, a set
of examples of handwritten digits was needed. The author of [6] has kindly
provided us with his set of 400 digits (40 digits per class). This set is later
referred to as set 400. While 400 examples are adequate for evaluating the
network as a whole, where no training examples are needed, the set is too
small for our experiments where training examples are needed for the auxiliary
classi�ers. For this reason a second set of examples, obtained from [1], was
used. This set contains almost 11000 digits from 44 di�erent writers. This
example set is referred to as set 11k. Unlike the set 400, this set had to be
digitised from the original vector format, and the numbers were normalised in
size during this digitisation. Another reason for having two sets was to have
examples created by two independent groups.

For each run in each of the experiments presented in this paper, the sets were
randomly partitioned into several training and testing sets. For the set 400 we
used 40% of data for training (160 examples) and the rest for testing. For the
set 11k we used 10% of data for training (1100 examples) and another 10% for
testing. The pairs of training and testing sets were mutually exclusive.

5 Results

Comparing the performance after the �rst layer, i.e. using only one of the
two classi�ers, and the performance after the last layer, i.e. results from the
neocognitron as a whole, we can see that the performance improves for the
set 400 by almost 20% while it decreases for the set 11k by about 40%.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 125-130



0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

1

Layer numbe
Pe

rf
or

m
an

ce
 [

%
]

I 1−S 1−C 2−S 2−C 3−S 3−C 4−S 4−C O

KMC
LVQ

Figure 4: Performance on a layer by layer basis for set 400

Table 1: Results showing percentage average accuracy

set 400 set 11k

MC LVQ MC LVQ
layer avg +/- avg +/- avg +/- avg +/-

I 50.3 1.8 47.9 4.2 85.1 0.5 86.7 1.1
1-S 52.2 6.1 43.3 3.4 80.9 0.7 78.4 6.3
1-C 73.2 0.6 70.7 1.0 90.7 1.2 94.0 0.4
2-S 51.5 2.3 44.2 2.9 67.9 2.3 64.9 5.7
2-C 84.0 2.2 86.0 0.7 89.7 0.8 90.3 1.4
3-S 61.1 1.8 63.1 0.7 62.9 1.9 64.4 3.6
3-C 71.2 0.1 73.3 0.9 69.7 1.3 68.5 1.5
4-S 63.6 0.6 66.8 0.7 46.1 2.2 46.0 3.5
4-C 66.3 3.3 67.1 3.3 44.0 0.2 43.2 2.3
O 63.7 0.9 66.0 3.2 46.7 0.7 42.8 2.2

Investigation of the performance on a layer by layer basis gives even more
signi�cant results. It shows that the maximum performance is usually reached
at the fourth sub-layer (2-C). The point to note is that approximately the
same maximum performance was reached for both sets at the fourth sub-layer
regardless of di�erent initial (layer I) and �nal (layer O) performances.

The graphs also show quite a signi�cant improvement in performance be-
tween neighbouring S and C sub-layer. This indicates the important role played
by the blurring C cells.

6 Conclusions

Experiments have shown that the performance of the neocognitron as a whole
is not optimal for generic sets of numerals. The performance, as measured by
other classi�ers, improves only up to the 4-th sub-layer, and then starts to
degrade. This suggests that an improved version of the neocognitron classi�er
could be constructed by using only the �rst 4 sub-layers followed by an MC or
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LVQ classi�er.
Our hypothesis is that as the set of features and their corresponding param-

eters are too speci�c in the latter layers (layer 3-S onwards) of the neocognitron,
the resulting network can be regarded as \over-trained". This results in the
sub-optimal performance on a general testing set when using the neocognitron
as a whole. This hypothesis will be tested in future work.

Our work is continuing by investigations on how the feature sets could be
made more general for character recognition, and on how to make the system
applicable to a wider range of pattern recognition problems.
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