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Abstract. Automatic Revelance Determination (ARD) has been ap-
plied to multilayer perceptrons by inferring di�erent regularization pa-
rameters for the input interconnection layer within the evidence frame-
work. In this paper, this idea is extended towards Least Squares Support
Vector Machines (LS-SVMs) for classi�cation. Relating a probabilistic
framework to the LS-SVM formulation on the �rst level of Bayesian in-
ference, the hyperparameters are inferred on the second level. Model
comparison is performed on the third level in order to select the parame-
ters of the kernel function. ARD is performed by introducing a diagonal
weighting matrix in the kernel function. These diagonal elements are ob-
tained by evidence maximization on the third level of inference. Inputs
with a low weight value are less relevant and can be removed.

1. Introduction
The Bayesian evidence framework has been succesfully applied to the design of
multilayer perceptrons (MLPs) [1, 3]. The model parameters are inferred from
the data by applying Bayes' rule on the �rst level of inference, with the prior
and likelihood corresponding to the regularization and error term, respectively.
The hyperparameters that control the trade-o� between error minimization
and regularization are inferred on the second level. Model comparison can be
performed on the third level. Automatic Relevance Determination [3, 5] (ARD)
involves the automatic determination of relevant inputs. Within the evidence
framework, ARD is applied to MLPs by introducing additional regularization
hyperparameters for the interconnections of each input. Evidence maximiza-
tion is used to infer the regularization parameters and input selection can be
performed by removing inputs with relatively large regularization constants.
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In Support Vector Machines (SVMs) [2, 10] and Least Squares SVMs (LS-
SVMs) [8], the inputs x 2 R

n are preprocessed in a nonlinear way by the
mapping '(�) : Rn ! R

nf that maps the input x! '(x) in a nonlinear way to
a high nf -dimensional feature space. A linear decision line is then constructed
in the feature space space. The mapping '(x) is never explicitly calculated and
Mercer's condition '(x1)

T'(x2) = K(x1; x2) is applied instead. The weights
and bias term of the SVM and LS-SVM can be obtained by applying Bayes'
rule on the �rst level of inference [2, 9]. Hyperparameters are inferred on the
second level, while the kernel parameters are obtained from model comparison
on the third level of inference. In this paper, an ARD algorithm is proposed
for LS-SVM classi�ers [8] within the Bayesian evidence framework [9]. Since
the mapping '(�) is not explicitly known, also the weights of the input layer
are unknown and in this sense ARD by optimal hyperparameter selection on
level 2 cannot be applied. Instead, ARD for SVMs is obtained by assigning a
weight [6] to each input of the kernel function K. These weights are inferred
by applying model comparison on the third level of Bayesian inference.

This paper is organized as follows. The inference of the model- and hy-
perparameters on level 1 and 2 is reviewed in Sections 2 and 3, respectively.
Automatic Relevance Determination by model comparison on level 3 is dis-
cussed in Section 4. An example is given in Section 5.

2. Inference of the Model Parameters (Level 1)

The LS-SVM classi�er y = sign[wT'(x) + b] is inferred from the data D =
f(xi; yi)gNi=1 by minimizing the cost function [8]

min
w;b

J1(w; b) = �EW + �ED = �
2w

Tw + �
2

PN
i=1 e

2
i (1)

subject to the constraints

ei = 1� yi(w
T'(xi) + b); i = 1; : : : ; N: (2)

The regularization and error term are de�ned as EW = 1
2w

Tw and ED =
1
2

PN
i=1 e

2
i , respectively. The trade-o� between regularization and training error

is determined by the ratio 
 = �=�.
This cost function is obtained in [8] by modifying Vapnik's SVM formu-

lation [10] so as to obtain a linear system in the dual space. Constructing
the Lagrangian by introducing the Lagrange multipliers �i for the equality
constraints (2), a linear system is obtained in the dual space

�
0 Y T

Y 
+ 
�1IN

� �
b
�

�
=

�
0
1v

�
(3)

with Y = [y1; : : : ; yN ]; 1v = [1; : : : ; 1]; e = [e1; : : : ; eN ]; � = [�1; : : : ;�N ]; and
where Mercer's condition is applied within the 
 matrix 
ij = yiyj '(xi)

T'(xj)
= yiyj K(xi; xj): Possible kernel functions are, e.g., a linear kernel K(x1; x2) =
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xT1 x2 and an RBF-kernel K(x1; x2) = exp(�jjx1�x2jj22=�2), where Mercer's
condition holds for all possible choices of the kernel parameter � 2 R. The
LS-SVM classi�er is then constructed as follows:

y(x) = sign[
PN

i=1 �iyiK(x; xi) + b]; (4)

with latent variable z =
PN

i=1 �iyiK(x; xi) + b, by de�nition.
A probabilistic interpretation for (1)-(2) is obtained by applying Bayes' rule

P (w; bjD; log �; log �;H) = P (Djw; b; log�; log �;H)P (w; bj log�; log �;H)
P (Dj log�; log �;H) ; (5)

where the model H corresponds to the kernel function K, possibly with kernel
parameters. The evidence P (Dj log�; log �;H) is a normalizing constant. The
prior is assumed to be of the form P (w; bj log�; log �;H) = P (wj log �;H)P (bjH),
with P (bjH) a non-informative uniform distribution. A Gaussian prior P (wj log
�;H) = ( �2� )

nf=2 exp(��
2w

Tw) is assumed. The likelihood is equal to P (Djw; b;
log �;H) =

QN
i=1 P (xijyi; w; b; log �;H)P (yijw; b; log �;H); with the constant

prior probabilities P (yijw; b; log �;H) and where the following conditional prob-
ability is assumed: P (xijyi; w; b; log �;H) = ( �

2� )
1=2 exp[� �

2 (1 � yi(w
T'(xi) +

b))2]: By applying Bayes' rule (5), we obtain the posterior probability P (w; bjD;
log�; log �;H) _ exp(��

2w
Tw) exp(� �

2

PN
i=1 e

2
i ): The maximum a posteriori

estimates wMP and bMP are obtained by minimizing the corresponding neg-
ative logarithm (1). This is equivalent to solving the linear system (3) in the
dual space.

3. Inference of Hyperparameters (Level 2)
Applying Bayes' rule on the second level of inference [2, 3, 9], we obtain:

P (log�; log �jD;H) _
p
�nf �Np
detH

exp(�J1(wMP ; bMP )); (6)

with the Hessian H = @2J1(w; b)=@[w; b]
2. In the optimum, the following rela-

tions hold [2, 3, 9]: 2�MPEW (wMP ) = 
eff � 1 and 2�MPED(wMP ; bMP ) =

N � 
eff , which is the Bayesian estimate estimate of the variance ��1 =PN
i=1 e

2
i =(N � 
eff ) of the noise ei. Combining both relations, we obtain a

relation between �MP and the ratio 
MP = �MP =�MP : 2�MP [EW (wMP ) +

MPED(wMP ; bMP )] = N � 1: For the LS-SVM, the e�ective number of pa-
rameters [1, 2, 3, 9] is equal to:


eff = 1 +
PNeff

i=1
�MP �G;i

�MP+�MP�G;i
= 1 +

PNeff
i=1


MP�G;i
1+


MP
�
G;i

; (7)

where the �rst term is obtained because no regularization on the bias term
b is used. The Neff non-zero eigenvalues �G;i corresponds to the Neff non-
zero eigenvalues of the centered Gram matrix in the feature space and are the
solutions to the eigenvalue problem [9]

(IN � 1
N Y Y

T )
�G;i = �G;i�G;i; i = 1; : : : ; Neff � N � 1: (8)
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A practical way to �nd the maximum a posteriori estimates �MP , �MP of (6)
is to solve �rst the following scalar minimization problem in 
 [9]:

min


J2(
) =

PN�1
i=1 log[�G;i+

1

 ]+(N�1) log[EW (wMP )+
ED(wMP ; bMP )]; (9)

with �G;i = 0 for i > Neff . In this optimization problem, expressions for
ED;MP and EW;MP are obtained from the conditions for optimality of the

Lagrangian on level 1 [8, 9]: ED;MP = 1
2
2

PN
i=1 �

2
i and EW;MP = �

2�
T
� =

1
2

PN
i=1 �i(1� �i


 �yibMP ): From the optimal 
MP , one easily obtains �MP

and �MP using the relations in the optimum between �, �, 
, EW (wMP ) and
ED(wMP ; bMP ).

4. Automatic Relevance Determination by In-
ference of Kernel Parameters (Level 3)

By applying Bayes' rule on the third level, the posterior for the model Hj is
obtained: P (Hj jD) _ P (DjHj)P (Hj): At this level, no evidence or normalizing
constant is used since it is impossible to compare all possible models Hj . The
prior P (Hj) over all possible models is assumed to be uniform here. Hence,
we obtain P (Hj jD) _ P (DjHj). The likelihood P (DjHj) corresponds to the
evidence (6) of the previous level and can be approximated by [2, 3, 9]

P (DjHj) _ P (Dj log�MP ; log �MP ;Hj)
�log �jD�log �jD
�log ��log �

; (10)

with �log �; �log � the standard deviations of the Gaussian priors (level 2) on
log�, log �, respectively.

The error bars �log �jD and �log �jD can be approximated [3] as follows:

�2log �jD ' 2

eff�1 and �2log �jD ' 2

N�
eff . The posterior (10) becomes [9]:

P (DjHj) _

r
�
Neff

MP
�N�1
MP

(
eff�1)(N�
eff )
QNeff
i=1 (�MP+�MP�G;i)

: (11)

One selects the kernel parameters, e.g, �j for an RBF-kernel, with maximal
posterior P (DjHj).

For Automatic Relevance Determination, we now introduce a diagonal1

weighting matrix [6] U = diag([u(1); :::;u(n)]). Each u(k) 2 R
+ weights the

corresponding input x(k), k = 1; :::; n in the kernel function K. For an RBF-
kernel, the kernel function becomes

K(x1; x2) = exp(�(x1 � x2)
TU(x1 � x2)=�

2) = exp(�(x1 � x2)
T �U(x1 � x2));

where the positive scale parameter � is taken into account by de�ning �U = U=�
and �U = diag(�u) = U=�. The weights �u are inferred by maximizing the model

1Instead of using a diagonal weighting matrix, the approach may be generalized towards
any positive de�nite weighting matrix �U 2 Rn�n. However, a physical interpretation of the
importance of the weights is less obvious when there are signi�cantly non-zero o�-diagonal
elements.
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evidence (11). The most relevant inputs will have larger weights, while the less
important inputs will have relatively small weights.

In order to �nd a good starting value for optimizing �u with respect to (11),
we will �rst infer the optimal � from (11) for u = [1; :::; 1]. This value then
serves as the starting point �u = [1; :::; 1]=� for the more complex optimization
of the weights �u. A practical algorithm consists of the following steps:

1. Normalize the inputs to zero mean and unit variance.
2. Optimize �j with respect to P (DjHj) from (11). For each �j , the opti-

mal �MP , �MP and 
MP are inferred on level 2 as follows:

(a) Solve the eigenvalue problem (8).
(b) Minimize J2(
) from (9), in each step one solves the linear system

(3) on level 1 and calculates EW jMP and EDjMP .
(c) Given 
MP , calculate �MP , �MP and 
eff .
(d) Calculate P (DjHj) from (11).

3. Select an initial choice for �u, e.g, �u = [1; :::; 1]=� (when Step 2 was the
previous step) or �u = �uprev(:::; l � 1; l+ 1; :::) otherwise.

4. Optimize �uj with respect to P (DjHj) from (11). See Step 2 for the
di�erent steps on level 1 (2b) and level 2 (2a-d).

5. Remove inputs l with low �u(l) values, go back to Step 3.

The main di�erences of this approach with Gaussian Processes [5] is that
GP typically infer the kernel parameters on level 2, together with the hyperpa-
rameters. The LS-SVM formulation also allows to derive analytical expressions
[2, 9], while sampling techniques have been used to design and evaluate GP [5].

5. Example: ARD with an RBF-kernel
We illustrate the ARD algorithm for an RBF-kernel on the synthetic binary
classi�cation dataset from [7]. The data set consists of a training set and test
set of N = 250 and Ntest = 1000 data points, respectively. Both classes �1
and +1 have equal prior probabilities and each class is an equal mixture of
two normal distributions. Due to the overlap of the distributions, the optimal
theoretical performance that can be achieved is 92:0%. The original problem
has two inputs (n = 2). The example created to illustrate ARD is inspired
on [4]: a �rst additional input x(3) is constructed from input x(1) by adding
Gaussian noise with variance 0:25. This input has some relevance. The second
additional input x(4) is zero mean, unit variance Gaussian noise. Then, all
inputs x(1 : 4) where normalized to zero mean and unit variance [1].

From Step 2, we obtained � = 2:54, �MP = 1:52 and �MP = 2:67 (with
u = [1; 1; 1; 1]). The training set and test set performance are 89:6% and
88:5%, respectively. In Step 3, we optimized �u with respect to (11) for all
inputs x(1 : 4). This yielded �u = [0:2237; 0:1307; 0:1804; 0:0016], �MP = 1:56,
�MP = 2:74, with training and test set performances of 89:6% and 89:2%,
respectively. The evolution of �u during the optimization is depicted in Fig-
ure 1. Removing input x(4) with very low relevance, we restarted the opti-
mization with �uold = [0:2237; 0:1307; 0:1804] for inputs x(1 : 3). We obtained
�u = [1:4276; 0:4996; 0:0869], �MP = 2:31, �MP = 3:02, while the training and
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Figure 1: Evolution of �u(1)(+), �u(2)(�), �u(3)(�) and �u(4)(o) as a function of
the number of iterations Niter of the optimization algorithm.

test performances were 90:0% and 90:8%, respectively. Input x(1) is now far
more inportant than input x(3). Removal of x(3) and retraining with inputs
x(1 : 2) yields �u = [1:9461; 0:1386], �MP = 1:56 and �MP = 2:87. Training and
test set performances are now 89:6% and 91:0%, respectively.

6. Conclusions
An Automatic Relevance Determination (ARD) algorithm is proposed for LS-
SVM classi�ers within the evidence framework. A diagonal weighting matrix
is introduced for the inputs of the RBF-kernel. The weights are inferred on the
third level of Bayesian inference. Inputs corresponding to small weights have
low relevance in the kernel function and can be removed. Although the RBF
kernel is known to be quite insensitive to irrevelant inputs, the generalization
behavior in our experiment is improved by using a weighting matrix.
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