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Abstract.  Time varying environments or model selection problems lead to 
crucial dilemmas in identification and control science. In this paper, we propose a 
modular prediction scheme consisting in a mixture of expert architecture. Several 
Kalman filters are forced to adapt their dynamics and parameters to different parts 
of the whole dynamics of the system. The performances of this modular learning 
scheme are evaluated on a visual servoing problem: motion prediction of an 
object in a 3-D space for pursuing it with a 3 degree-of-freedom robot 
manipulator. 
 
 
 

1 Introduction 
 
If positioning is a basic task in robotic, tracking a moving target is a more 
sophisticated one. Indeed, target tracking implies to include the system’s dynamics, 
and to have some information available about the target’s movements. 
Dynamics can be taken into account with a structure like the Kalman Filter (KF). This 
structure however suffer from the fact that the system’s model has to be perfectly 
known. To overcome this limitation, a state model Adaptive Kalman Filter (AKF) is 
used. Thus, without having access to the system and noise models, this filter is able to 
approximate its dynamics around the current state. 
In this paper, we propose to integrate different noise models rather than designing a 
controller for a specific system behavior. This is done by the divide-and-conquer 
principle of the mixture of experts. This modular architecture mediates the output of 
several expert networks and learns their performances as a function of the system’s 
behavior. The expert networks, by way of state model Adaptive Kalman Filters with 
different noise properties, will be assigned to the whole system’s workspace. 
As an illustration, the proposed architecture is used to predict the movements of an 
object moving in a 3-D space. The predictions serve to visually control a three-
degree-of-freedom redundant robot manipulator with a stereoscopic visual sensor. 
The target’s movements (and the end-effector’s movements) are thus anticipated and 
these predicted values are used to compute the motor responses for the robot. In 
practice, this prediction step also allows to compensate the incompressible time-delay 
introduced by the image acquisition. Without any a priori knowledge about the 
target’s movements, and without the robot models and the scene configuration, the 
robot is able to track moving targets accurately. 
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2 Neuro-Control Principle 
 
A visual-feedback control loop allows a robotic system to interact with the scene in 
which it evolves. Computer vision providing closed-loop position control for a robot 
end-effector is referred to as visual servoing [1]. This section describes the 
relationships on which feedback control is based, and introduces how a simple neural 
network structure is able to visually servo a robot manipulator in an efficient and 
robust manner. 
Consider V 3∈ R the image feature parameter space, and k ∈v  V and k ∈d  V, 
respectively the image coordinate vector of the end-effector and of the visual target, 
with k, the time index. Two cameras, voluntary placed in a same plane, measure the 
visual error vector. This error is determined in the image space by 
 k k k= −e d v . (1) 
Consider f , the forward kinematic transformation between joint and image position 
spaces: 
 f : Q → V , ( )k k=v f q , (2) 
where Q q∈ R  is the robot joint space of dimension q and kq  the joint angles vector. 
Feedback control methods are generally based on a linear approximation in the 
neighborhood of the working point. Thus, if k∂q  and k∂v  are small displacements 
measured respectively in joint and image feature spaces at instant k, a local linear 
Jacobian approximation allows determination of the motor response k∆q  in terms of 
an incremental position variation: 
 .k k k∆ =q B e . (3) 
We choose to approximate the inverse image Jacobian -1( )k k= fB J q  with a 
supervised Self-Organizing Maps (SOM) neural network as proposed and fully 
described in [2]. This iterative stochastic adaptation of kB  realizes de facto a linear 
local approximation, and is used to control the robot arm. Its performances have been 
emphasized in several robot positioning tasks and learning sensory-motor 
coordination. 
 

3 State Model Adaptive Kalman Filter 
 
To describe the discrete-time Kalman filtering algorithm, a stochastic state-space 
system can be represented by  
 1k k k+ = +x Ax Dw , (4) 
 k k k= +z Cx v , (5) 

where n
k ∈x R  is the system state vector and p

k ∈z R  the measurement. Vectors 
s

k ∈w R  and p
k ∈v R  are respectively the disturbance noise and measurement noise, 

both are assumed to be zero mean and Gaussian noises with covariance kQ  and kR . 
If the two noise sequences are stationary and mutually independent, and mutually 
independent of 0x , the Kalman algorithm recursively calculates the optimal 
estimation 1ˆ k k+x . 
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Kalman filtering requires an exact knowledge of the model parameters for optimal 
behavior. Practically, one often has only access to a simplified model, to an 
approximated model or to a model valid in a restricted workspace. This is true for the 
system model (state representation) and for the noises properties (the two first-order 
moments of the stochastic processes). 
To overcome these limitations, the filter's parameters can be estimated online while 
filtering. These filters are called adaptive and are commonly limited to the estimation 
of kQ  and kR  [4]. They also assume all the other parameters to be known, in 
particular the system’s dynamical model. They suppose optimality, thus if the 
innovation sequence is no more a white Gaussian sequence, kQ  and kR  are modified 
in consequence. 
To cope with the unavailability of the system's dynamical model, we have proposed 
and evaluated an alternative approach, a state model adaptive Kalman filter [5]. This 
adaptive filter works without the explicit system’s dynamical model. Its system 
matrix is continuously adjusted and estimated around the current state. If the process 
noise is centered ( [ ] 0kE =w ) and if the process is only controlled by the stochastic 
parts, the system matrix can be expressed by  

 ( ) 11
1 1 1 1

ˆ T T
k k k k k k k

−−
− − − −= =A x x x x x x . (6) 

Assuming the measurement sequence kv  to be centered ( [ ] 0kE =v ), the state at 
iteration k can be expressed from (5): ˆ

k k k
+=x C z . 

These two last expressions lead to the adaptation of the state model: 

 1 1
1 1 1 1 1 1 1 1

ˆ ( )T T T T T T T
k k k k k k k k k k k k k

− − − − −
− − − − − − − −=A C G z z G G G z z C G C , (7) 

if p < n, and where *T p p
k k k= ∈G C C R  and 1 1

1 1 1( ) ( )T T T
k k k
− − −

− − −= =G G G . 
This approach is stable, robust, and works best for representative noise statistics. 
To address more complex problems, with time-varying or various noise statistics, we 
propose to use a modular architecture composed of AKFs with different noise models. 

 

4 Prediction with a Modular Architecture 
 
The mixture of experts was firstly proposed by [3]. This modular architecture, 
depicted in Figure 1, allows to switch between different neural networks, called 
expert networks. A gating network learns their performances and mediates their 
outputs. 
At iteration k, the output of the mixture is expressed by the weighted sum of the 

outputs of the K expert networks, , ,1

K
k i k i ki

g
=

= ∑y y . The output ,i ky  of the ith expert 

network is mediated with an activation function elaborated by the gating network. 
This function is referred to as softmax and is defined by 

 ( )( ) 1// ,,
, 1

e e
TT K j ki k

i k j
g

−

=
= ∑

uu
, (8) 
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where T denotes a “temperature parameter” and , ,
T

i k k i k=u x a  is a function of the 
inputs kx . The values of the synaptic weight vector ,i ka  of the ith output neuron in 
the gating network at iteration k+1 are adapted according to 
 ( ), 1 , , ,i k i k k i k i k kh gη+ = + −a a x . (9) 

The output of the ith expert network is associated with a conditional a posteriori 
probability, iteratively adapted: 

 

22

22

111
, 1, 1 2, ,2

,
1

e e ji

K k i kk i ki k i k
i k

ji j

g g
h σσ

σ σ

−
−− −−

=

 − −
  =

  
  

∑
d yd y

, (10) 

where kd  is the desired response and iσ  denotes a scaling parameter associated with 
the ith expert network. 

For the prediction task, state model AKFs with different parameters are used as expert 
networks. The original algorithm of the mixture of experts is then modified, firstly by 
the adaptation of the diagonal covariance matrices ,i kQ  and ,i kR  of the ith AKF. The 
strategy of adapting these estimated covariances is implemented by 

 , 1 , ,(1 )i k i k k i khβη+ = −Q Q , with 0β > , (11) 

 , 1 , ,(1 ' )i k i k k i khβ η+ = −R R , with ' 0β > . (12) 

Secondly, and in order to improve the learning performance of the gating network, an 
adaptive learning rate scheme was implemented: (1 )k e αεη η −= − . α  is a positive 
constant and η  is a exponentially decreasing function of time converging to a 
minimum positive value. This rate is not only a function of time but also of an error 

2
, 11

( ( ) ( ))
N

k i kn
n nε −=

= −∑ d y . Vectors kd  and ,i ky  now represents respectively the 

last measurement and the last prediction. The objective of this learning scheme is to 
increase the learning rate of the current expert network. Each AKF, by been 
specialized in only a part of the system’s workspace, will thus improve its prediction 
performances. 
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Figure 1. The mixture of experts framework 
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5 Predictive Robot Control 
 
Various experiments have been conducted to compare the predictive neuro-controller 
architectures. Some experiments have been implemented on our robotic platform. 
Other experiments use a simulation of the robotic setup to test the various system 
parameters in a more exhaustive manner. 
In a simulated application, 40 AKFs with different parameters and initializations are 
placed in the mixture of experts architecture. The gating network learns the 
performances of the experts networks on an accelerating curved trajectory which ends 
with little random movements in a restricted area. The speed of the target varies from 
0.01 to 1.5 m/s. Figure 2 a) shows that there is often only one AKF that is the most 
able to do the predictions. The selected AKFs are then reinforced to predict specific 
kinds of trajectory. Figure 2 also shows the evolution of the adaptive learning rate 

kη , the absolute error prediction of the modular architecture and the adaptation 
strategy of the covariances ,i kQ . The results are presented in Table 1 and are 
compared to a single AKF working alone and to a mixture of experts whose gating 
network is a random process. This last modular predictor allows no learning, the 
experts are not associated to the target’s dynamics, and the AKFs cannot thus 
properly adapt their parameters. The single AKF is limited, its noise properties are not 
valid over the whole trajectory, inducing important maximum errors. 
For an experiment consisting in following a target in a 3-D space with a three-degree-
of-freedom robot, the neuro-controller associated with the modular predictor allows to 
divide the tracking error by 3. 

0 2 0 0 4 0 0 6 0 0 0 

0.2 

0.4 

0.6 

0.8 

1 

0 2 0 0 4 0 0 6 0 0 0 
0.1 

0.3 

0.5 

0.7 

0.9 

 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0
M a t r i c e  d e  c o v a r i a n c e  Q

0 2 0 0 4 0 0 6 0 0 0 

2 0 

4 0 

6 0 

8 0 

0 2 0 0 4 0 0 6 0 0 0 

5 

1 5 

2 5 

 
Figure 2. Evolution of the different parameters. a) the AKF weightings, b) the adaptive 

learning rate, c) the ,i kQ  diagonal elements and, d) the absolute error prediction (pixels). 
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6 Conclusion 
 
For time varying environments, neural networks alone do not always constitute an 
efficient solution. The Kalman filter, inherently, allows to consider a system’s 
dynamics. In order to make this filter as flexible as neural networks, and thus to work 
with systems that cannot be modeled with sufficient precision, we introduce an 
approach using multiple adaptive state models in a modular structure where each filter 
specializes to handle specific noise statistics. 
These state model adaptive filters adjust their dynamics to the system’s dynamics, and 
thus estimate the system’s current state. Using different adaptive filters allows to split 
the system’s workspace into several parts characterized by different noise properties. 
The mixture of experts structure, based on the divide-and-conquer principle, perfectly 
mediates the filters’ responses and learns to associate the different filters to the 
different system’s behaviors. 
This new modular approach is evaluated by predicting a moving target’s movements 
in a 3-D space with no a priori knowledge. Visually controlled, a robot tracking task 
has been improved by the accuracy of the predictions. 
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X coordinate Y coordinate Absolute Prediction 
Error (pixels) Mean Std Dev. Max. Mean Std Dev. Max. 

Single AKF 0.5162 9.431 178.481 0.432 7.532 161.599 

Mixture with softmax 
gating network 

0.375 2.716 22.110 0.2938 2.632 13.057 

Mixture with random 
gating network 

31.270 70.296 148.361 23.35 52.269 195.607 

Table 1. The absolute prediction errors for a single AKF and mixtures of experts 
with the softmax learning algorithm and a random weighting. 
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