
Input pruning for neural gas architectures

Barbara Hammer1 and Thomas Villmann2

(1) University of Osnabr�uck, Department of Mathematics/Computer
Science, Albrechtstra�e 28, 49069 Osnabr�uck, Germany,

e-mail: hammer@informatik.uni-osnabrueck.de
(2) University of Leipzig, Clinic for Psychotherapy and Psychosomatic

Medicine, Karl-Tauchnitz-Stra�e 25, 04107 Leipzig, Germany,

e-mail: villmann@informatik.uni-leipzig.de

Abstract. The neural gas algorithm provides a method to cluster a data
space via an adaptive lattice of neurons which captures the topology of
the data space. We propose di�erent methods to determine the relevance
of the single data dimensions for the overall neural architecture. This
enables us to perform input pruning for the unsupervised neural gas
architecture. The methods are tested on various datasets.

1. Introduction

The neural gas algorithm (NG) or topology representing networks (TRN) are
introduced in [10, 11] based on ideas of Kohonen's self organizing map [7].
They provide a clustering of the training data together with a neighborhood
function on the centers of the clusters, the codebooks. The topology which
is induced by this neighborhood function is detected by the algorithm itself
and hence �tted to the respective data in contrast to the self organizing map
where additional consideration may be required in order to �nd an appropriate
topology [2, 5, 16, 17]. There exist various possibilities of further processing the
outputs of the NG: attaching labels or local linear maps to the codebooks gives
rise to general functions [7, 13], hence unsupervised methods can be involved
in prediction tasks in machine learning. Substituting the input vectors by the
distances to the codebooks yields a reduced representation of the original data
[6], hence unsupervised methods can be used for preprocessing. Finally, the
Delaunay graph computed by TRN allows structured data mining [8].

Often, data are high dimensional. Since time and memory required for
training increases with increasing data dimension, this should be kept as small
as possible, which can be interpreted as data pruning. Thereby data pruning is
taken as weighting of the several input dimensions represented by the respective
data coeÆcients. The possibility of pruning may give us further insight to the
problem since it tells us which dimensions are relevant. Formally speaking,
pruning means choosing input weights � = f
1; : : : ;
ng which indicate whether
input dimension i 2 f1; : : : ; ng is important for the overall function or not.

There exists a couple of pruning algorithms for supervised neural networks:
weight decay, skeletonization, optimum brain damage, . . . [9, 14]. Several ideas
can be transferred to unsupervised methods used for function approximation

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 283-288

directly after additional changes such as substituting the winner-takes-all func-
tion by a di�erentiable version if necessary. One adaptation of these methods
is presented in [12]. Other possibilities for dimensionality reduction are statis-
tical methods such as principal component analysis [15] or semantic nets [8].
However, these methods are entirely independent of the learning methods. We
would like to obtain pruning criteria which are �tted to the NG and, at the
same time, do not assume that the NG is used for supervised tasks.

Now the question occurs of which are typical characteristics of unsupervised
architectures? The architecture should somehow yield a compact representa-
tion of the data { the precise way in which this task is approached as well
as a precise mathematical formulation of this task is often not obvious. The
architecture and topology which we consider is maintained by NG or TRN; for
convenience, we refer to NG in the following. We propose di�erent objectives
the sensitivities of which provide a ranking of the input weights �: We consider
how pruning a�ects the dispersion, the clustering, the energy function, or the
topology of the architecture. These methods are tested on arti�cial data with
an obvious topology as well as data from the UCI repository [3].

2. The neural gas algorithm

Assume a �nite set of training dataX = fx1; : : : ; xmg � R
n is given. The single

components of a vector x � R
n are denoted by (x1; : : : ; xn) in the following.

The goal of NG is to spread codebook vectors w1, . . . , wK among X , K being
a �xed number of codebooks which is chosen a priori, such that they mirror
the dataset as accurately as possible. For this purpose, the codebooks are
initialized with random vectors and iteratively updated as follows:

repeat: choose xi 2 X
for all codebooks wj

wj := wj + � � h�(k
j(xi; w)) � (xi � wj)

where h�(t) = e�t=� and kj(xi; w) is the number of codebook vectors wl, l 6= j,
such that jwl � xij < jwj � xij. � and � are positive numbers which are
often decreased during training in order to ensure convergence. The update
corresponds to a stochastic gradient descent on the cost function

E(w; �) =
1

2 � C(�)

KX
i=1

mX
j=1

h�(k
i(xj ; w))jxj � wij2

where C(�) =
PK�1

i=0 h�(i) [10]. Under idealized assumptions the dynamic
approaches the superposition of minimization of a potential induced by the data
distribution and a force towards directions with a low density of codebooks.

After training the codebooks maintain a clustering of X . The cluster rep-
resented by wi is the receptive �eld Ri = fx 2 X j 8wj (j 6= i ! jx � wij �
jx � wj j)g. Additionally, a neighborhood on the codebooks is provided as
follows: those codebooks wi and wj are neighbored such that Ri \ Rj 6= ;.
Reference [11] provides a possibility to compute the neighborhood iteratively
during the training process. After training, two codebooks are neighbors i�
they constitute the closest codebooks for some training point.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 283-288

3. Pruning methods

We would like to determine the smallest set I = fi1; : : : ; ipg � f1; : : : ; ng such
that the behavior of the NG architecture reduced to dimensions I remains
(approximately) the same. Two questions arise in this context: What are
adequate characterizations of the behavior of the architecture? How can we
avoid the necessity to consider all subsets of f1; : : : ; ng? We propose a greedy
heuristic for the latter question, i.e. we iteratively compute and rank the input
weights � according to some signi�cance measure and prune the least important
input dimension. To some extend we have to use heuristics:

Theorem 1 Assume C � 1 is �xed. For any Y � R
n and indices I =

fi1; : : : ; ijg � f1; : : : ; ng denote the restriction of Y by YI = f(pi1 ; : : : ; pij) jp 2
Y g. Unless P=NP, no polynomial time algorithm can solve the following task:
Given n > 0 and a �nite set Y � R

n as input. Find indices I � f1; : : : ; ng
such that jYI j = jY j and jI j � C �minfjJ j j jYJ j = jY jg.

Proof: The hitting set problem is the following problem: Given a �nite set
Z and subsets S1, . . . , Sp � Z, �nd Z 0 � Z such that Si \ Z 0 6= ; for all i
and the cardinality of Z 0 is at most C times the cardinality of the smallest set
such that this condition holds. This problem is NP-complete [1]. We reduce
the above problem to the problem as stated in the theorem.

Given an instance Z = fm1; : : : ;mng, S1, . . . , Sp of the hitting set problem,
de�ne n = jZj and Y = f(0; : : : ; 0)g [fi � eSi j i = 1; : : : ; pg where eSi 2 Rn is
the vector with

eSi

j =

�
1 if mj 2 Si ;
0 otherwise.

Obviously, jYI j = jY j holds for I � f1; : : : ; ng i� fmi j i 2 Ig is a hitting set.
Assumed we could �nd indices I such that jYI j = jY j and jI j is at most C times
the minimum achievable size, fmi j i 2 Ig would constitute a hitting set the
size of which is at most C times the minimum achievable size. 2

Hence we cannot eÆciently �nd indices such that the codebooks remain mu-
tually disjoint and the number of indices is close to the optimum achievable
number unless P=NP { we have to rely on heuristics for input pruning! Which
are possible functions F : � ! R determining the input weights and hence
measuring the importance of the input dimensions? As above, denote the
codebooks by w1, . . . , wK and the training data by X = fx1; : : : ; xmg. We
propose the following measures:

Dispersion: For clustered data the patterns belonging to a cluster are closer
to the center than other points. De�ne

F1(
I) = 2�
1

K
�
KX
j=1

P
xl2Rj

jxlI � wj
I j=jRj jP

xl2X jx
l
I � wj

I j=jX j

where Rj denotes the receptive �eld of wj . F1 measures to which extend the
dispersion of the I th components of points in the receptive �eld is reduced in
comparison to the dispersion of the I th components of all points. Those
I
where the dispersion is not reduced, i.e. F1(
I) is small, are less important.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 283-288

Weight function: One can assign the function f : Rn ! R
n to the NG

architecture, which maps an input to the closest codebook vector. Those input
weights are important which most a�ect this mapping. Note that this mapping
is piecewise constant. Hence it will not change at all if we prune only one
dimension in a high dimensional data space. Therefore we approximate f by

~f(x) =

KX
j=1

wj �
e�jx�w

jj2=�Pk
o=1 e

�jx�woj2=�

with some value � > 0, ~f being di�erentiable. For the sake of eÆciency we
approximate the di�erence of the above term and the term with I th compo-
nent �xed to 0 by the derivative in the direction I and obtain the signi�cance
measure F2(
I) = 2=(Knm�)�

mX
l=1

�������
PK

j=1(x
l
I � wj

I)
2elj �

PK
j=1 w

jelj �
PK

j=1 e
lj �
PK

j=1 w
j(xlI � wj

I)
2elj�PK

j=1 e
lj
�2

�������
where elj = e�jx

l�wj j2=� .

Cost function: NG minimizes the function E(w; �) via a stochastic gradient
descent. Those input weights are to be ranked important for the architecture
which a�ect this minimum most. Again, we approximate the piecewise constant

ki occurring in E by a di�erentiable function: ~ki(x;w) =
PK

o=1 sgd((jx�w
ij2�

jx � woj2)=�) where sgd(t) = (1 + e�t)�1 and � > 0. We approximate the
induced signi�cance measure by the derivative in the direction of I :

F3(
I) =
1

�C(�)Kmn

������
KX
i=1

mX
j=1

h0�(
~ki(xj ; w))jx � wij2

KX
o=1

sgd0((jxj � wij2 � jxj � woj2)=�)((xjI � wi
I)
2 � (xjI � wo

I)
2)

����� :
Topology preservation: The NG architecture provides a lattice which mir-
rors the topology of the data. Those weights
I are less important which do not
a�ect the topology. We approximate the neighborhood via the de�nition: two
codebooks wi and wj are neighbored () the point in between, (wi +wj)=2,
is closest to wi and wj . This depends on the codebooks only and approximates
the neighborhood structure unless the data manifold is not reasonably convex.
Hence those input weights are less important where all neighbors remain neigh-
bored codebooks after pruning, i.e.

P
wi$wj

P
k 6=i;j H(jw

k j2 � wk(wi + wj) +

wiwj) = 0 after pruning, H denoting the step function and wi $ wj being
a shorthand notation for neighbored codebooks. Again we approximate via a
di�erentiable function and the derivative in direction I : F4(
I) = 2=(K2�)�

j
X

wi$wj ;k 6=i;j

sgd0((jwk j2�wk(wi+wj)+wiwj)=�)((wk
I)

2�wk
I (w

i
I+wj

I)+wi
Iw

j
I) j

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 283-288

4. Experiments

Arti�cial data: We consider two dimensional data which are either uni-
formly distributed or form uniformly distributed or random clusters in [�1; 1]�
[�1; 1]. We add four dimensions with uniform noise in [�0:5; 0:5], [�0:35; 0:35],
[�0:2; 0:2], and [�0:05; 0:05], respectively, and four copies of the �rst compo-
nent with uniform noise from the above intervals added. Hence dimensions 1
and 2 provide structure information, dimensions 3�6 contain pure noise { which
may contribute to the overall structure for unsupervised processing, either; di-
mensions 7�10 partially substitute dimension 1, with additional structure due
to the noise. We train a NG architecture with various numbers of codebooks.
F1 separates dimensions without structure (F1 yields values of approximately
1) and dimensions with structure (F1 yields values of approximately 2). The
remaining measures yield comparable results and rank dimension 2 and at least
one of dimensions 1, 7, and 8 high. Depending on whether more codebooks
than clusters are available, dimensions 3 or 4 which contain additional struc-
ture due to random noise with large variance are ranked high either.

Iris data: The task is to predict three classes from 4 real valued attributes in
150 instances. Denote by (x; y) the inputs and unary encoded labels. We train
on (x; y). We map inputs x to yi, assumed (xi; yi) is the closest codebook to
(x; 0). An architecture with 6 codebooks yields 3 misclassi�cations. Pruning
dimensions 1; 2; 3, or 4 leads to 4, 4, 6, and 5 misclassi�cations and suggests a
ranking 3; 3; 1; 2 of the dimensions. F1 ranks all dimensions as important, i.e.
yields values approximately 2, the other measures provide the ranking 1; 4; 2; 3
for F2, 4; 1; 2; 3 for F3, or 4; 3; 1; 2 for F4 as can be seen in Table 1. F4 precisely
matches the signi�cance, F2 and F3 di�er in only one dimension.

Mushroom data: The task is to predict two classes from 22 symbolic at-
tributes. Unary encoding of the attributes yields 112 dimensions and 8124
instances, hence a diÆcult task for unsupervised methods. Accordingly, we
obtain an error of about 10% with 8 codebooks. F1 ranks about half of the
dimensions as important (values approximately 2), the remaining dimensions
as less important (values approximately 1). The other measures provide the
�ve highest values for the input weights
I , I being (26; 54; 36; 37; 108) for F2,
(100; 56; 36; 37; 26) for F3, or (50; 51; 91; 26; 36) for F4. This comprises weights
corresponding to dimensions encoding attributes with only few possible values
(e.g. 36) and hence large separation ability. Additionally, all measures rank 26
(which corresponds to the attribute `no odor') high. According to [4] where
logical rules are extracted from supervised classi�ers, this is one of the most
signi�cant attributes for this task which allows { together with one additional
attribute { an accuracy of more than 95%.

1 2 3 4 ranking
errors 4 4 6 5 3 3 1 2
F2 0.73 0.32 0.64 0.33 1 4 2 3
F3 0.73 1.74 1.64 0.81 4 1 2 3
F4 0.75 0.78 1.67 0.97 4 3 1 2

Table 1: Signi�cance measures for the iris-database

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 283-288

5. Conclusions

We proposed a method for determining the relevance of input dimensions for
the unsupervised NG architecture. The signi�cance measures are based on
values which capture certain aspects of the NG architecture: The reduction
of the dispersion due to the clustering, the e�ect on the classi�cation, the
e�ect on the function which is minimized during training, and the e�ect on the
topology. The four di�erent measures are tested on arti�cial data sets where
the topology is known as well as benchmarks from the UCI repository. It turns
out that the �rst measure provides only rough estimations, whereas the other
3 measures provide promising results and enable us to perform eÆcient input
pruning. Obviously, the optimum choice of the signi�cance measure depends
on which aspects of the NG architecture are most important for the respective
behavior in the concrete learning task. Other measures such as referring to the
entropy or expert knowledge constitute reasonable alternatives to the proposed
signi�cance measures. Further work will lie in applications where no labeling
is provided and we are mainly interested in the topology of the unsupervised
neural architecture such as the organization and visualization of documents or
large databases and automated keyword or feature extraction.

References
[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M.

Protasi, Complexity and Approximation, Springer, 1999.
[2] H.-U. Bauer and K. Pawelzik, Quantifying the neighbourhood preservation of self-

organizing feature maps, IEEE Transactions on Neural Networks 3(4), pp.570-579, 1992.

[3] C.L. Blake and C. J. Merz, UCI Repository of machine learning databases , Irvine, CA:
University of California, Department of Information and Computer Science.

[4] W. Duch, R. Adamczak, and K. Gr�abcweski, Extraction of crisp logical rules using
constrained backpropagation networks, in M. Verleysen (ed.), Proceedings of ESANN'97,
D-facto Publications, 1997.

[5] B. Fritzke, Growing self-organizing networks { why?, in M. Verleysen (ed.), Proceedings
of ESANN'96, D-facto Publications, pp.61-72, 1996.

[6] S. Kaski, Dimensionality reduction by random mapping: fast similarity computation for
clustering, in Proceedings of IJCNN'98, pp.413-418, 1998.

[7] T. Kohonen, Self-Organizing Maps, Springer, 1997.

[8] K. Lagus, T. Honkela, S. Kaski, and T. Kohonen, WEBSOM for textual data mining,
Arti�cial Intelligence Reviews 13 (5/6), pp.345-264, 1999.

[9] Y. LeCun, J. Denker, and S. Solla, Optimal brain damage, in D. Touretzky (ed.), Ad-
vances in NIPS 2, Morgan Kaufmann, pp. 598-605, 1990.

[10] T.M. Martinetz, G. Berkovich, and K.L. Schulten, `Neural-Gas' network for vector quan-
tization and its application to time-series prediction, IEEE Transactions on Neural Net-
works 4(4), pp.558-569, 1993.

[11] T.M. Martinetz and K.L. Schulten, Topology representing networks, Neural Networks
7(3), pp. 507-522, 1993.

[12] U. Matecki, Automatische Merkmalsauswahl f�ur Neuronale Netze mit Anwendung in
der pixelbezogenen Klassi�kation von Bildern, Shaker, 1999.

[13] A. Meyering and H. Ritter, Learning 3D-Shape-Perception with Local Linear Maps,
Proceedings of the IJCNN'92, pp.432-436, 1992.

[14] M. Mozer and P. Smolensky, Skeletonization: a technique for trimming the fat from a
network via relevant assessment, in D. Touretzky (ed.), Advances in NIPS 1, Morgan
Kaufmann, pp.107-115, 1989.

[15] E. Oja, Principal component analysis, in M. Arbib (ed.), The Handbook of Brain Theory
and Neural Networks, MIT Press, pp.753-756, 1995.

[16] H. Ritter, Self-organizing maps in non-euclidean spaces, in E. Oja, S. Kaski (eds.),
Kohonen Maps, pp.97-108, 1999.

[17] T. Villmann, R. Der, M. Herrmann, and T. M. Martinetz, Toplogy Preservation in Self-
Organizing Feature Maps: Exact De�nition and Precise Measurement, IEEE Transac-
tions on Neural Networks 8 (2), pp. 256 - 266, 1997.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 283-288

