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Abstract.

We discuss a framework for modeling the switching dynamics of a time
series based on hidden Markov models (HMM) of prediction experts, here
neural networks. Learning is treated as a maximum likelihood problem.
In particular, we present an Expectation-Maximization (EM) algorithm
for adjusting the expert parameters as well as the HMM transition prob-
abilities. Based on this algorithm, we develop a heuristic that achieves
a hard segmentation of the time series into distinct dynamical modes
and the simultaneous specialization of the prediction experts on the seg-
ments. We present examples of the application of this algorithm to the
segmentation of arti�cial and �nancial time series.

1 Introduction

In this paper, we consider a parametric dynamical system with discrete states
to which are associated prediction experts. The state transitions are assumed
to be governed by an homogeneous Markov chain, as discussed in Kohlmorgen
et al. [6]. The architecture can be viewed as a particular case of input/output
HMM (IOHMM) [1] in which the transitions are independent on the inputs and
accomplish a hard partitioning of the input space.

The architecture is interpreted as a statistical model and learning is treated
as a maximum likelihood problem; in particular we present a generalized EM
(GEM) algorithm [4] for adjusting the expert parameters as well as the state
transition probabilities, considering the internal states as missing data. In order
to gradually achieve a soft-to-hard segmentation of the data and meanwhile to
increase the robustness of the algorithm, we introduce a heuristic that adjusts
on the y the dispersion of the error distribution of the prediction experts. The
model performance is �rst assessed on arti�cially generated chaotic data and
then on a �nancial time series.
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2 Prediction experts

In the following we assume that the reader is familiar with the basic principles
of HMM. For a thorough introduction, we refer to the tutorial by Rabiner [7].
Our presentation closely derives from Kohlmorgen et al. [6]. Consider an H-
MM where each state i = 1; : : : ; T is associated to a prediction expert. The
prediction expert predicts the future value yt = xt+� of a time series fxtg or
some exogene variable, given a vector of past values xtt�d = (xt�d; : : : ; xt) of
arbitrary length. d is the embedding dimension and � is the delay parameter.
We assume that the target variables yt, at each time t, is given by some deter-
ministic function, fi(x

t
t�d), where i is current dynamic mode, with added noise

�t, so that

yt = fi(x
t
t�d) + �t (1)

The errors �t are assumed to have a normal distribution with zero mean
and a (unknown) standard deviation, �, which does not depend on xtt�d or on
t. Let a = 1=2�2, the conditional probability distribution of target variables
for each expert is given by

p(ytjx
t
t�d; i) =

r
a

�
e�a(yt�fi(x

t

t�d
))2 (2)

Note that the parameter a > 0 will be adjusted in the course of training.
The HMM state transition matrix A = faijg determines the probability to
switch from state i to state j. This matrix A is kept constant in [6] to incorpo-
rate some prior knowledge about the rate the switching events occur. In this
paper, we extend further the procedure by allowing the training procedure to
adjust the transition rates when no prior knowledge is available.

3 Expert training

We seek to model the functions fi() by prediction experts. The training is
performed by Generalized Expectation-Maximization (GEM) algorithm to help
�nd the maximum likelihood estimator of the system. We have data, the time
series fxtg, which have been observed and data, the hidden states fstg at each
time t, which have not, and a vector of parameters �. By making use the
auxiliary EM function [3], it is easily shown that maximizing the likelihood for
the complete data problem is equivalent to minimizing the cost

E = �

NX
i=1

TX
t=d

ln [p(ytjx
t
t�d; st = i; �)]t(i)�

NX
j=1

�t(i; j) ln aij (3)

where �t(i; j) = P (st = i; st+1 = jjxT1 ; y
T
1 ; �

old) and t(i) =
P

j �t(i; j). The
M-step requires minimizing E with respect to the expert network parameters
and the HMM transition probabilities. Generalized EM algorithm (GEM),
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that simply produces a decrease in E. Examining Eq. 3, we see that the expert
network parameters inuence E only through the �rst term, and the HMM
transition probabilities inuence E only through the second term. Thus the M-
step reduces to separate maximization problems representing each a particular
maximum likelihood problem.

Transition probabilities - The optimal transition probabilities are readily
obtained: the derivative of E with respect to the transition probabilities, aij ,
under the constraint

P
j aij = 1 yields, by application of the Lagrange theorem,

the following values a?ij = (
PT�1

t=1 �t(i; j))=(
PT�1

t=1 t(i)).

Expert parameters - The M-step for the expert parameters reduces to
a weighted least squares problem, that can be solved by any least-squares al-
gorithm suited to the regression model employed. The derivative of the er-
ror with respect to the output of an expert fk can drastically be simpli�ed,
@E=@fk = �2a

PT
t=1 t(k)(yt � fk(x

t
t�d)).

4 Segmentation

Alternating the E and M steps yields a local maximum of the system likeli-
hood. However the optimal likelihood principle yields a solution in which the
parameters of an expert are inuenced by the overall training set, and not only
on the subset of the data assigned to that expert. This is undesirable. In order
to achieve a hard segmentation and exclusively assign the data points to the
experts, Kohlmorgen et al. introduce a deterministic annealing by means of a
soft-max function over t(i) (i.e., e

t(i)=�=(
PN

j=1 e
t(j)=�)) where the \temper-

ature" � is gradually decreased during training. Unfortunately, the heuristic
ends up with a solution that exclusively assigns the data points at time t to
expert argmaxjP (st = jjxT1 ; y

T
1 ), which is clearly sub-optimal as discussed in

[7].
Instead we would like the t(i)'s to converge towards the optimal state

sequence obtained by the well-known Viterbi algorithm [5], (i.e., argmaxs1;:::;sT
P (s1; : : : ; sT jx

T
1 ; y

T
1 )). Therefore, we modify on the y the parameter a in

order to play on the error variance. Starting with small values of a allows the
diversi�cation of the experts: the matrix A being symmetric, no HMM state
is favored and thus all t(i) are equals to 1=N regardless of the expert errors.

Deriving the error with respect to a, yields a unique optimal value a? =
1=2H where H = 1

T

PN
i=1

PT
t=d t(i)(yt � fi(x

t
t�d))

2 is the model expected
squared error and is therefore time dependent. As training progresses, H and
thus a? = 1 converge to a limiting value. Also, the idea is to start with a = 0 to
promote the diversi�cation of the experts and then slowly increase a up to a?,
and then freeze the system once a? has converged and a stable segmentation is
obtained by application of the Viterbi algorithm.

To summarize, the method is decomposed in two stages. The �rst stage is
a standard application of the GEM training, except that a and the aij 's are
gradually increased, at the end of each epoch, up to a? and a?ij . the optimal
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values calculated at the current iteration. The �rst stage normally ends up with
a stable segmentation. In the second stage, the Viterbi algorithm exclusively
assigns the data to the experts and therefore promote the specialization of the
experts.

5 Simulation results

The method is illustrated on arti�cial and real-world data. The same MLP
is used in all experiments. The architecture consists of a tapped delay line
of size 6, 8 hidden units and a linear output unit. For each setting we ran
10 trials with di�erent seeds for the initial weights. To gauge performance of
the HMM-based EM algorithm, the resulting MSE is compared to a reference
MSE and a minimum MSE. The reference MSE is that obtained from a single
neural net on the overall data set. The minimum MSE on arti�cial data is that
obtained from neural nets pre-trained independently on their own dynamic
until complete convergence. The latter can be viewed as the lowest possible
value for the MSE we can expect from the algorithm, provided we know the
true segmentation.

Mackey-Glass: For this �rst example, consider the Mackey-Glass equa-
tions, dx(t)=dt = �0:1x(t)+0:2x(t��)=(1+x(t��)10). A 4-th order Runge-
Kutta technique was used to simulate the chaotic series. The stationary op-
erating modes where established by using di�erent delays � = 17, � = 23;
and � = 30 and a sampling rate of f = 6. 500 data were generated in total.
Each mode covers exactly 100 data points. The lowest MSE obtained with a
single NN is MSE = 0:117. The minimum MSE is MSE = 0:048. The HMM-
based EM algorithm yields on average MSE = 0:074. Fig.1 shows a typical
segmentation, along with the output of each NN. As may be observed, each
NN achieves almost perfect forecasts when it is selected as expert, and give
erroneous predictions outside its own dynamic. A typical error curve is shown
in Fig. 2.

H�enon-Logistic maps: In this second example, the mapping underlying
the time series randomly alternates between the H�enon bi-dimensional system
x(k+1) = 1:0�1:4�x2(k)+0:3�x(k�1) and the logistic map x(k+1) = 4:0�x(k)�
(1�x(k)). 5000 data were generated. At each time step, a transition occurred
at random with probability 1=100. Therefore, the mean segment length is 100.
In order to have both series in the same y-range, the H�enon map was linearly
rescaled into (0; 1). As the task is more diÆcult, we were forced to �x the initial
value for a21 = a12 to 1/100, otherwise, the system did not converge properly.
The MSE obtained with a single NN is MSE = 0:018. The minimum MSE
obtained with 2 pre-trained neural nets is MSE = 0:009. The HMM-based
EM algorithm yields on average MSE = 0:011. Results are not plotted for
conciseness. Although the convergence is slower and sensitive to the initial
value for the transition probabilities. Here again, each NN achieves almost
perfect forecasts when it is selected as expert, and give erroneous predictions
outside its own dynamic.
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Real data: a stock option index made up from 4085 patterns was used. Of
course, the minimum MSE could not be calculated as we have no idea what the
optimal segmentation is. First the data was di�erentiated yt = (xt+1 � xt)=xt
and afterwards rescaled in the range (�1;+1). The number of neural nets
was varied. We started with a single NN and obtained MSE = 0:6. The
best performance is obtained using 3 experts, MSE = 0:022. A fourth expert
did not prove useful. As may be seen in Fig. 2 on a subset of the data, the
HMM-based EM algorithm did not �nd distinct dynamics. Instead, it has split
the series according to the magnitude of the data so as to perfectly over �t
the actual time series. While this not the result we expected, it demonstrates
the model ability to perfectly over�t a large amount of data (4085) given a
moderate number of adjustable parameters (151 in total).

6 Conclusion

We presented a new method for the unsupervised segmentation and identi�ca-
tion of switching dynamics, based on a combination of a hidden Markov model
and neural experts as discussed in [6]. The method was illustrated of arti�cial
and real data. On-line prediction is left for future work.
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Figure 1: Mackey-Glass series. Upper left plot: true series and the segmen-
tation obtained by the HMM-based EM algorithm. Other plots: the neural
expert outputs.
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Figure 2: Left: stock option index in plain line, 3 neural experts in dotted line.
Right: Typical error curve.
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