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Abstract. The extended Kalman filter (EKF) is considered one of the most ef-
fective methods for both nonlinear state estimation and parameter estimation (e.g.,
learning the weights of a neural network). Recently, a number of derivative free
alternatives to the EKF for state estimation have been proposed. These include the
Unscented Kalman Filter (UKF) [1, 2], the Central Difference Filter (CDF) [3] and
the closely related Divided Difference Filter (DDF) [4]. These filters consistently
outperform the EKF for state estimation, at an equal computational complexity of
O(L3). Extension of the UKF to parameter estimation was presented by Wan and
van der Merwe in [5, 6]. In this paper, we further develop these techniques for
parameter estimation and neural network training. The extension of the CDF and
DDF filters to parameter estimation, and their relation to UKF parameter estimation
is presented. Most significantly, this paper introduces efficient square-root forms of
the different filters. This enables an O(L2) implementation for parameter esti-
mation (equivalent to the EKF), and has the added benefit of improved numerical
stability and guaranteed positive semi-definiteness of the Kalman filter covariances.

1. Introduction
The EKF has been applied extensively to the field of nonlinear estimation for both state
estimation and parameter estimation. The focus of this paper is on parameter estimation
(i.e., system identification or machine learning), which involves determining a nonlin-
ear mapping yk =G(xk ;w), where xk is the input, yk is the output, and the nonlinear
map (e.g., neural network), G(�), is parameterized by the vector w. Typically, a train-
ing set is provided with sample pairs consisting of known input and desired outputs,
fxk;dkg. The error of the machine is defined as ek = dk �G(xk;w), and the goal
of learning involves solving for the parameters w in order to minimize the expectation
of some given function of the error. While a number of optimization approaches exist
(e.g., gradient descent, backpropagation, and Quasi-Newton methods), parameters can
be efficiently estimated on-line by writing a state-space representation

wk+1 = wk + rk (1)

dk = G(xk ;wk) + ek; (2)

where the parameters wk correspond to a stationary process with identity state transi-
tion matrix, driven by process noise rk (the choice of variance determines convergence
and tracking performance). The output dk corresponds to a nonlinear observation on
wk. The EKF can then be applied directly as an efficient “second-order” technique for
estimating the parameters [7, 8]. In this paper, we present new derivative-free imple-
mentations of Kalman filtering for this purpose.

�This work was sponsored in part by NSF under grant ECS-0083106, and DARPA under grant F33615-
98-C-3516.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 205-210



2. Derivative-free Nonlinear Filters

The EKF involves the recursive estimation of the mean and covariance of the state (i.e.,
parameters) under a Gaussian assumption. The inherent flaws are due to its lineariza-
tion approach for calculating the statistics of a random variable, x, which undergoes a
nonlinear transformation, y = f(x). This linearization can be viewed as a truncation
of the Taylor-series expansion of the nonlinear function around the mean �x (to simplify
notation we give the scalar expansion),

y = f(x) = f(�x+�x) (3)

= f(�x) + �xf
0

(x)jx=�x +
1

2!
�2
xf

00

(x)jx=�x + : : : (4)

where the zero mean random variable �x has the same covariance, Px, as x. The
“first-order” mean and covariance used in the EKF is thus given by �y = f(�x);P y =
f 0(�x)TPxf

0(�x), which often introduces large errors relative to the true posterior mean
and covariance.

The UKF [1, 2, 5, 9], is an improved derivative-free approach to Kalman filtering.
Essentially, 2L + 1, sigma points (L is the state dimension), are chosen based on a
square-root decomposition of the prior state covariance. These sigma points are propa-
gated through the true nonlinearity, without approximation, and then a weighted mean
and covariance is taken. A simple illustration of the approach is shown in Figure 1 for
a 2-dimensional system: the left plot shows the true mean and covariance propagation
using Monte-Carlo sampling; the center plots show the results using a linearization ap-
proach as would be done in the EKF; the right plots show the performance of the UKF
approach (note only 5 sigma points are required). This approach results in approxima-
tions that are accurate to the third order (Taylor series expansion) for Gaussian inputs for
all nonlinearities. For non-Gaussian inputs, approximations are accurate to at least the
second-order [2]. (Full specification UKF equations for the square-root implementation
will be given in the next section).

To relate this sample-based approach to the EKF, we consider expanding the nonlin-
ear function,y = f(x), by polynomial approximations based on interpolating formulas.
One such formula is Sterling’s interpolation formula, which, if we limit ourselves to a
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Figure 1: Example of mean and covariance propagation.
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second order expansion gives the following approximation

y � f(�x) + �xf
0

CD(x)jx=�x +
1

2!
�2
xf

00

CD(x)jx=�x (5)

f
0

CD(x) =
f(x+ h)� f(x� h)

2h
and f

00

CD(x) =
f(x+ h) + f(x� h)� 2f(x)

h2
:

One can thus interpret Eqn. 5 as a second order Taylor series expansion where the
derivatives are replaced by central differences which only rely on functional evalua-
tions. Expanding this approximation to higher-dimensions, is achieved by first stochas-
tically decoupling the prior random variable x by the following transformation, z =
S�1
x x, where Sx is the Cholesky factor of the covariance matrix of x, Px, such that
Px = SxS

T
x . This allows for the application of the central differencing operations

independently to the eigen-axes of the random variables covariance-subspace.
This formulation was the basis of Norgaard’s [4] recent derivation of the divided

difference filter as well as Ito and Xiong’s [3] central difference filter. These two filters
are essentially identical and will henceforth be refered to jointly as the CDF. While
the UKF was not developed in this manner, a careful analysis of the Taylor series
expansion of both the CDF and the UKF approximations, show that both approaches
are essentially the same (i.e., square-root decompositions of the covariance, functional
evaluations around the prior mean, and weighted sample means and covariances for the
posterior estimates). Both filters actually calculate the posterior mean exactly the same.
The difference between the two approaches, however, lie in the approximation of the
posterior covariance term. In both filters, the cross-terms in the higher order expansions
of the covariance are ignored to avoid combinatorial explosion and keep computational
cost down. The CDF and the UKF simply retain a different subset of these terms. The
CDF does, however, have a smaller absolute error in the fourth order term and also guar-
antees positive semi-definiteness (PSD) of the posterior covariance (a single scale factor
h is used1 ). In contrast, the UKF may result in a non-positive semi-definite covariance,
which is compensated for using two additional heuristic scaling parameters [2].

Both the CDF and UKF provide substantial performance increase over the EKF in
state estimation problems, and are in general O(L3). However, for parameter estima-
tion, the specific form of the state-space equations allow the EKF to be implemented in
O(L2). In the following section, we present new square-root implementations of the
derivative-free Kalman filters that are also O(L2).

3. Efficient Square-Root Implementation

In the standard Kalman implementation, the state (parameter) covariance Pw is recur-
sively calculated. The UKF requires taking the matrix square-root, SwSTw = Pw, at
each time step, which is O(L3=6) using a Cholesky factorization. In the square-root
UKF (SR-UKF) and square-root CDF (SR-CDF) implementations, Sw (as well as the
Cholesky factor, Sd, of the observation-error covariance) will be propagated directly,
avoiding the need to refactorize at each time step. This and the special state-space for-
mulation of parameter estimation allows for an O(L2) implementation2. The complete
specification of the new square-root filters are given in Algorithm 3.1.

1The scale h is optimally set equal to the kurtosis of the prior RV [4, 3]. For Gaussians, h =
p
3.

2Although both Norgaard and Ito [4, 3] also implemented the CDF and DDF in a square-root form, this
was in the framework of state estimation and did not exploit efficient Cholesky updates or the special form of
the parameter estimation state-space that leads to reduction in computational cost.
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Initialize with: ŵ0 = E[w], Sw0
= chol

�
E[(w � ŵ0)(w � ŵ0)

T ]
	

For k 2 f1; : : : ;1g,

Time update and sigma point calculation:

ŵ�
k = ŵk�1 (6)

S�wk
= �

�1=2
RLS Swk�1

or S�
wk

= Swk�1
+Drk�1

(7)

Wkjk�1 =
�
ŵ�
k ŵ�

k + 
S�wk
ŵ�
k � 
S�wk

�
(8)

Dkjk�1 =G[xk ;Wkjk�1] (9)

d̂k =

2LX
i=0

W
(m)
i Di;kjk�1 (10)

Measurement update equations:
if SR-UKF:

Sdk = qr

��q
W

(c)
1

h
D1:2L;k � d̂k

i p
Re

��
(11)

Sdk = cholupdate
n
Sdk ; D0;k � d̂k ; W (c)

0

o
(12)

Pwkdk =
2LX
i=0

W
(c)
i [Wi;kjk�1 � ŵ�

k ][Di;kjk�1 � d̂k]T (13)

elseif SR-CDF:

Sdk = qr

��q
W

(c)
1 [D1:L,k �DL+1:2L,k]

q
W

(c)
2 [D1:L,k +DL+1:2L,k � 2D0,k]

p
Re

��

Pwkdk = S�wk

�q
W

(c)
1 [D1:L;k �DL+1:2L;k]

�T
(14)

end Kk = (Pwkdk=S
T
dk
)=Sdk (15)

ŵk = ŵ�
k +Kk(dk � d̂k) (16)

U = KkSdk (17)

Swk
= cholupdate

�
S�wk

; U ; -1
	

(18)

R
e=measurement noise covariance (this can be set to an arbitrary value, e.g., :5I.). Drk�1

=

�Diag �Swk�1

	
+
q
Diag

�
Swk�1

	2
+Diag

�
Rr

k�1

	
. qrf�g denotes the QR decomposition

of a matrix where only the upper triangular part of R is returned (this equals the transpose of the
Cholesky factor of P = AA

T ). S = cholupdatefS;u;��g denotes the M consecutive rank-1
updates (or downdates), P�p�uuT , using the M columns of u. A=b denotes the least squares
solution to Ax = b (solved using a QR decomposition with pivoting).
SR-UKF parameters : fWig is a set of scalar weights, W (m)

0 = �=(L+ �) , W (c)
0 = �=(L +

�) + (1 � �2 + �) , W (m)
i

= W
(c)
i

= 1=f2(L + �)g (i = 1; : : : ; 2L). � = �2(L+ �)� L ,

 =

p
(L+ �), � and � are scaling parameters.

SR-CDF parameters : fWig is a set of scalar weights, W (m)
0 = (h2 � L)=h2, W (m)

i
=

1=2h2 (i = 1; : : : ; 2L), W
(c)
1 = 1=4h2 , W (c)

2 = (h2 � 1)=4h4 , h � 1 is the scalar central
difference step size (
 = h in Eqn. 8).

Algorithm 3..1: SR-UKF and SR-CDF for parameter estimation.
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Key elements of the algorithm are as follows: The time-update of the state covari-
ance (for the special parameter estimation case) is given simply by P�

wk
= Pwk�1

+
Rr
k�1. In the square-root filters, Swk

may thus be updated directly in Eqn 7 using one

of two options: 1) S�
wk

= �
�1=2
RLS Swk�1

, corresponding to a an exponential weighting
on past data3. 2) S�

wk
= Swk�1

+Drk�1
, where the diagonal matrix Drk�1

, is chosen
to approximate the effects of annealing a diagonal process noise covarianceR r

k�1
4 or

a Robbins-Monro derived noise estimate [10]. Next, in Eqn. 14 the Cholesky factor,
Sdk , is calculated using a QR decomposition of the compound matrix containing the
weighted observed sigma points and the matrix square-root of the additive measure-
ment noise covariance. This step differs slightly in the SR-UKF and is broken up into
two steps: Firstly, because the zeroth weight, W (c)

0 , may be negative in the SR-UKF,
the first observed sigma point is not included in the QR decomposition. Instead, it is
incorporated by a subsequent Cholesky update (or downdate) in Eqn. 12 depending on
the sign of W (c)

0 . These steps are O(LM 2), where M is the observation dimension. In
contrast to the way the Kalman gain is calculated in the standard UKF, we make use of
Norgaard’s method based on two nested inverse (or least squares) solutions to the fol-
lowing expansion of Eqn. 15,Kk(SdkS

T
dk
) = Pxkyk . Since Sd is square and triangular,

efficient “back-substitutions” can be used to solve for Kk directly without the need for
a matrix inversion. Finally, the posterior measurement update of the Cholesky factor
of the state covariance is calculated in Eqn. 18 by applying M sequential Cholesky
downdates to S�

wk
, which requiresO(L2M) computations.

4. Experimental Results

The improvement in error performance of the UKF and CDF over that of the EKF for
state estimation is well documented [2, 5, 9, 4]. For parameter estimation, the perfor-
mance of the different filters are expected to be more comparable (this is because the
state-transition function is linear, Eqn. 1, while the nonlinearity arises only in the obser-
vation equation, Eqn. 2). The main advantage of the derivative-free forms is in avoiding
the need to evaluate Jacobians or Hessians. The focus of this section will be to verify the
error performance of the SR-UKF and the SR-CDF compared to the EKF and UKF, and
show the reduction in computational cost achieved by the efficient square-root forms.

For the first experiment, we train a 2-12-2 MLP neural network on the well known
Mackay-Robot-Arm5 benchmark problem of mapping robotic joint angles to Cartesian
hand coordinates. The learning curves of the different filters are shown in Figure 2a. As
expected, the performance of all filters are comparable. In the next example, we con-
sider training a 2-10-10-4 network on a benchmark pattern classification problem hav-
ing four interlocking regions (see [7] for details). Figure 2b illustrates learning curves
for the different filters, and again shows the equivalent performance of the square-root
derivative free approaches relative the EKF. Finally, Figure 3 shows how the computa-
tional complexity of the different filters scale as a function of the number of parameters
(MLP weights). Clearly, the EKF and all square-root filters are O(L2).

3This is identical to the approach used in weighted recursive least squares (W-RLS). �RLS is a scalar
weighting factor chosen to be slightly less than 1, i.e. �RLS = 0:9995.

4This updates ensures the main diagonal of P�wk
is exact. However, additional off-diagonal cross-terms

Swk�1
DT
rk�1

+Drk�1
ST
wk�1

are also introduced (though the effect appears negligible).
5http://wol.ra.phy.cam.ac.uk/mackay
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5. Conclusions
In this paper, we showed how different derivative-free filters can be related, and intro-
duced square-root forms, specifically applied to parameter estimation for training neural
networks. The square-root forms result in efficientO(L2) implementations, have better
numerical properties than their non square-root forms, and provide similar performance
relative to EKF parameter estimation without the need to analytical calculate Jacobians.
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