
Learning Fault Tolerance in
Radial Basis Function Networks

Xavier Parra and Andreu Català

Department of Automatic Control – Technical University of Catalonia
Av. Víctor Balaguer, s/n – 08800 Vilanova i la Geltrú – Barcelona – Spain

Xavier.Parra@upc.es and Andreu.Catala@upc.es

Abstract. This paper describes a method of supervised learning based on
forward selection branching. This method improves fault tolerance by
means of combining information related to generalization performance and
fault tolerance. The method presented focuses on the evolutive nature of
the learning algorithm of Radial Basis Function Networks and employs
optimization techniques to control the balance between the approximation
error with and without faults. The technique developed is empirically
analyzed and provides a simple and efficient means of learning fault
tolerance. This is illustrated by examples taken from different
classification and function approximation problems.

1. Introduction

In general, the main objective of any kind of learning usually is knowledge
acquisition. The attempt to reach this aim requires the use of some kind of
experience, combined with an empirical knowledge of the problem about which
we try to acquire knowledge (this is the case of supervised learning). For
example, when considering this latter kind of learning, it is normal to control the
knowledge acquisition by means of some sort of optimization strategy or
different measures of the error. As an alternative, it is common to use the
deviation between the learned and the known outputs or the output predictions or
even the evaluation of the generalization capacity in the face of new inputs.
Basically, the objective is to get an artificial neural network with acquired
knowledge and good generalization. However, knowledge does not have to be
restricted to the improvement of a single quality, as could be the generalization
capacity of the neural network. The robustness of that neural network or its
reliability or fault tolerance are some of the key topics we could consider too
when the goal is to acquire knowledge.

Obviously, to tolerate faults that affect structural elements is completely
different than to tolerate noise that affects inputs. The former is fault tolerance.
The latter is robustness to noisy inputs. The work presented in this paper
particularly concentrates on aspects related with fault tolerance and learning.
The reasons of having fault tolerant neural systems are diverse. Our interest is in
hardware implementation. We are interested on analog implementations (where
defects could be found) and on digital implementations (where fault tolerance
could suppose a reduction in the number of bits needed to represent the architec-
ture). Initially, fault tolerance, known as the ability of a system to operate
correctly in presence of faults, was considered as an inherent quality of artificial
neural systems. Later on, it has been shown that fault tolerance is definitely not

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 341-346

an inherent and natural quality of neural systems, though it can be introduced to
such systems by different optimization strategies (see [1] and [2]).

Learning capacity of artificial neural networks is the main quality exploited
to get better networks as far as fault tolerance is concerned. Training with faults
[3] and retraining [4] are two particular techniques of the neural systems, and
both are oriented towards the attenuation of the system’s degradation in presence
of faults. Training with faults is a method based on the modification of the
normal training conditions. Techniques based on this method can be split into
two major groups. In the first group, we find those techniques that modify some
of the conditions in the system’s environment but without affecting the learning
algorithm [3]. In the second group of learning-with-faults techniques, we find
those which actively modify the learning algorithm introducing fault tolerance as
a factor to optimize.

Evolutive learning algorithms are of especial interest when trying to
introduce essential information about fault tolerance into the learning algorithm
with the objective of improving the solution in the sense of being more fault-
tolerant. This is the case of radial basis function networks (RBF). The idea of
modifying the learning algorithm in order to incorporate significant information
related to fault tolerance into it is the main contribution of the work presented.

Learning algorithm and architecture of RBF networks will be briefly
described in the following section. In Section 3, we will discuss the method of
branching applied during the selection of RBF centers. Section 4 presents results
of simulations using one of the techniques developed previously. Finally, we will
draw some conclusions regarding the effect of forward selection branching.

2. Learning algorithm of radial basis function networks

Radial basis function networks (RBF) have been traditionally associated with a
simple architecture of three layers [2]. Each layer is fully connected to the
following one and the hidden layer is composed of a number of nodes with radial
activation functions called radial basis functions. Each of the input components
feeds forward to the radial functions. The outputs of these functions are linearly
combined with weights into the network output. Each radial function has a local
response (opposite to the global response of sigmoid function) since their output
only depends on the distance of the input from a center point.

Radial functions have a structure that can be represented as follows:
))cx(R)cx(()x(iii −−= −1Tϕφ (1)

where ϕ is the radial function used, {ci | i = 1, 2,…, c} are the radial function
centers and R is a metric. The term (x - c)T R-1 (x - c) denotes the distance from
the input x to the center c on the metric defined by R. There are several types of
functions used, though the Gaussian function is the most typical choice, combi-
ned with the Euclidean metric. In this case, the output of the RBF network is:

∑
= 











 −
−+=

c

i

i
i

r
wwx

1
2

2

0

cx
exp)() (2)

where c is the number of basis functions, {wi | i = 1, 2,…, c} are the synaptic
weights, || · || denotes the Euclidean norm and r is the radius of the radial
function.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 341-346

The RBF learning algorithm is an incremental and evolutionary process. Its
mathematical foundation is called subset selection and consists in comparing
models made up of different subsets of elements drawn from the same fixed set
of candidates. To find the best subset is usually intractable so heuristics must be
used to search for a small but hopefully interesting fraction of the space of all
subsets. However, the use of these heuristics does not guarantee that the
solutions we get include the least number of elements needed to reduce the
approximation error to a fixed value.

The heuristic method called forward selection is widely used with RBF
networks [5], though it is not the only learning paradigm in RBFs. According to
this method, the subset that must be determined is the subset of centers that fix
the location of the radial functions in the input space. The method begins with an
empty subset to which is added one basis function at a time. The center of the
radial function added is selected among the whole set of input patterns and is the
one that most reduces the approximation error. The learning process continues
until some chosen criterion stops decreasing (e.g. generalized cross-validation).

3. Learning fault tolerance during RBF center selection

Forward selection methods try to minimize the approximation error but do not
consider aspects like synaptic weight values or other features such as the size of
the network or its fault tolerance. Hence, we can obtain solutions that include
large synaptic weight values. Large values for synaptic weights are an
unambiguous symptom of low fault tolerance. In general, as it is shown in [6].
Large weight values are likely to correspond to non fault-tolerant candidates.
However, this fact makes it possible to enrich the classic optimization strategy
used in forward selection methods, in order to consider not only the
approximation error, but also the synaptic weight values.

It seems reasonable that if we act properly on the learning in order to
incorporate fault tolerance information into it, results should tend to improve this
fault tolerance. This assumption can be made since the heuristic used during the
progressive selection of radial function centers is not an optimum method.

As described in Section 2, the center of the radial function added during
forward selection is the one that most reduces the approximation error. The
process starts with an empty set of candidates. The approximation error is
assessed for every candidate for the radial function center, supposing that this
candidate is included in the network architecture. The process stops with the
selection of the candidate that most reduces the approximation error. However,
the better candidate according to the approximation error criteria it is not
necessarily the better candidate according to the fault tolerance criteria. In fact,
often the opposite is the case.

The contribution presented in this paper focus on the center selection which
determines the best candidate to be included in the neural architecture. Thus, the
basic idea is to determine the error approximation associated to each center
candidate and to combine this error with the one obtained when the same
candidate for the radial function center is affected by a fault. The new center
selection process proposed here still calculates the approximation error under the
hypothesis that the center candidate is a part of the neural architecture, as the
classic forward selection method does. In addition, the center selection process

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 341-346

calculates the approximation error when the synaptic weight associated to the
new radial function, which has the candidate as a center, is affected by a fault.

In order to assess the approximation error in presence of faults, we need to
know the laws that characterize these faults. These laws are settled by the fault
model. The fault model considered in this work is parametric [7]. Thus, when a
neural element faults, its value suffers a variation that linearly depends on a
parameter called tolerance parameter (δ). There are at least two possible
parametric model laws defined as:

www ~ δ+= (3)
δ+= ww~ (4)

where w is the original value of the neural element and w~ is the faulty value.
The combination of the approximation error, with and without faults, to

generate a single value for each center candidate is made as follows:
C E T= + −α α()1 (5)

where C is the function to optimize, E is the fault-free approximation error, T is
the approximation error with faults and α is a weighting factor. Factor α controls
the balance between the approximation error with faults and the approximation
error without faults. Thus, when α goes to 1 is equivalent to considering only the
fault-free approximation error and this is what we call classic training. On the
other hand, when α goes to 0 is equivalent to considering only the approximation
error with faults and we shall refer to it as faulty training.

4. Simulations and results

Simulations have been carried out on a real classification problem (Cancer) and a
function approximation problem (MacKay’s Hermite Polynomial). The classifi-
cation problem used belongs to PROBEN1 data base and the PROBEN1 standard
rules have been used during training [8]. The first partition of the problem has
been used, that is to say, ‘Cancer1’. The function approximation problem used is
from [9] and is based on a one-dimensional Hermite polynomial of equation:

2

)21(1 2 xexxy −+−+= (6)
100 input values are sampled randomly between –4 < x < 4 and a Gaussian noise
of standard deviation σ=0.1 is added to the outputs. Each data set has been
divided into three subsets: training set, validation set and test set, with a relation
of 50%, 25% and 25%, respectively. Initially, networks are trained on the
training set while the validation set is used to adjust the radial function radius r.
Once the radial radius has been fixed, a new training process is carried out. This
training process is done on both data sets, the training set and the validation set.
The fault model and the fault selection methodology followed are, in both cases,
the same model and methodology described in [7].

Table 1 shows results obtained for Cancer and MacKay’s Hermite polynomial
problems. Although the mean-squared-error over the training set is slightly
higher in the faulty case, the errors over the test set are quite similar for classical
and faulty training. A remarkable point derived from the detailed study of results
is that for both trainings it is possible to get similar learning levels and similar
generalization capacities, which makes it possible to say that the general
performance for both learning algorithms is equivalent.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 341-346

Table 1. Training results for Cancer classification problem (δ = 0.1 and α = 0.1)
and MacKay's Hermite polynomial problem (δ = 0.5 and α = 0.5).

Classic Faulty
Training Test Training TestProblem Radius

c
Mean std mean Std

c
mean std Mean std

Cancer 2.0074 52 0.029 0.092 0.022 0.067 9 0.041 0.113 0.021 0.060
MacKay 0.2041 22 0.009 0.013 0.010 0.015 23 0.009 0.012 0.010 0.014

Table 2. Center selection order for MacKay’s Hermite polynomial problem

Step # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …
Classic 0 119 5 39 12 45 122 63 73 82 147 129 121 52 137 136 …
Faulty 0 119 5 39 12 45 63 122 73 82 129 147 37 48 52 137 …

In Table 2, we find the first seventeen centers selected among the training
patterns following the classic and faulty training described above. As can be seen
in the data, the set of centers is identical until the twelfth step. At this point, the
faulty training allows us to select a branch of centers that diverges from the
branch followed with the classic training. From the thirteenth selection, the
evolution of classic training has little in common with the evolution of faulty
training, since the successive approximation errors strongly depend on the actual
set of radial function centers.

Since forward selection branching is proposed as a method of acquiring
knowledge about fault tolerance, it seems interesting to compare the fault
tolerance of the RBF network we obtain from classic and from faulty training.
To do this, we need a measure of the degree of fault tolerance to establish an
order between different neural systems. The fault tolerance measure used in this
work is called approximation quality [7]. This measure assigns to each neural
element a value which is inversely proportional to the degradation generated on
the system performance when a fault affects the neural element. In Figure 2, is
shown the approximation quality for the Cancer classification problem. We only
need to remember that a high value for the approximation quality means good
fault tolerance, while a low value means poor fault tolerance. As can be seen, the
approximation quality achieved by the faulty training is uniform when the

Figure 2: Fault tolerance for Cancer problem with classic (grey) and faulty
(black) training.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 341-346

number of faulty weights grows. When considering the degradation caused by
the least fault-tolerant fault (i.e. the left corner in Figure 2), it can be shown that
the degradation is 60% worse for the classic training than for the faulty one.
Thus, the fault tolerance degree achieved by the faulty training is superior to the
one achieved by the classic training.

5. Conclusions

The work presented here shows the possibility of acquiring some kind of
knowledge on neural systems fault tolerance. We have shown that fault tolerance
is a quality that can be learned by means of an optimization strategy. The
adaptation of the learning algorithm to make use of information related with
fault tolerance during the training process is particularly interesting when
working with RBF networks since their learning algorithm is an evolutive
process. This learning quality makes it possible to combine the objective of
approximation error minimization with the issue of fault tolerance improvement
while the neural system builds its architecture.

Fault tolerance in not an inherent feature of artificial neural networks.
Nevertheless, forward selection branching during the selection of RBF centers
implemented into the faulty learning method seems to be an efficient technique
that, as it supports a similar generalization level, allows us to improve neural
systems fault tolerance. Further work remains still to be done to characterize
fault tolerance properly and to understand the means by which their fault
tolerance can be assured.

References

[1] G.R. Bolt. Fault Tolerance in Artificial Neural Networks. PhD thesis,
University York, UK (1992).

[2] D.S. Broomhead and D. Lowe. Multivariable Functional Interpolation and
Adaptive Network, Complex Systems, vol. 2, pp. 321-355 (1988).

[3] C.H. Séquin and R.D. Clay. Fault Tolerance in Feedforward Artificial
Neural Networks. Neural Networks, vol. 4, pp. 111- 141 (1991).

[4] M.D. Bedworth and D. Lowe, Fault Tolerance in Multi-Layer Perceptrons,
RSRE: Pattern Processing and Machine Intelligence Division (1988).

[5] S. Chen, C.F.N. Cowan and P.M. Grant. Orthogonal Least Squares Learning
for Radial Basis Function Networks. IEEE Transactions on Neural
Networks, vol. 2(2), pp. 302-309 (1991).

[6] X. Parra and A. Català, Sensitivity Analysis of Radial Basis Function
Networks for Fault Tolerance Purposes, 5th International Work-Conference
on Artificial and Neural Networks (1999).

[7] A. Català and X. Parra, Fault Tolerance Parameter Model of Radial Basis
Function Networks. Proceedings of the IEEE International Conference on
Neural Networks, pp. 1384-1389 (1996).

[8] L. Prechelt, PROBEN1: Set of Neural Network Benchmark Problems and
Benchmarking Rules. Tech. Report 21/94, University of Karlsruhe (1994).

[9] D.J.C. MacKay, Bayesian Interpolation. Neural Computation, vol. 4(3), pp.
415-447 (1992).

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 341-346

