
A Novel Chaotic Neural Network Architecture

Nigel Crook and Tjeerd olde Scheper

School of Computing and Mathematical Sciences
Oxford Brookes University, Headington, Oxford

1. Introduction

The basic premise of this research is that deterministic chaos is a powerful mechanism
for the storage and retrieval of information in the dynamics of artificial neural
networks. Substantial evidence has been found in biological studies for the presence
of chaos in the dynamics of natural neuronal systems [1-3]. Many have suggested
that this chaos plays a central role in memory storage and retrieval [1,4-6]. Indeed,
chaos offers many advantages over alternative memory storage mechanisms used in
artificial neural networks. One is that chaotic dynamics are significantly easier to
control than other linear or non-linear systems, requiring only small appropriately
timed perturbations to constrain them within specific Unstable Periodic Orbits
(UPOs). Another is that chaotic attractors contain an infinite number of these UPOs.
If individual UPOs can be made to represent specific internal memory states of a
system, then in theory a chaotic attractor can provide an infinite memory store for the
system. In this paper we investigate the possibility that a network can self-select
UPOs in response to specific dynamic input signals. These UPOs correspond to
network recognition states for these input signals.

2. Controlling Chaos

One of the surprising features of chaotic systems is the ease with which they can be
controlled. Several methods have been developed for the control of chaotic systems
over recent years [7-9]. We believe that the feedback method of control is most
appropriate in the context of chaotic neural networks. The reasons for this are based
on the biological plausibility of the control method. First, the delay feedback method
does not rely on a priori knowledge of the local dynamics of the attractor around the
UPO to be stabilised. It seems very unlikely that biological neuronal networks have
this kind of detailed knowledge of their own dynamics. Second, the delayed feedback
method does not specify which UPO is to be stabilised, it simply specifies the period
of the required orbit. This suggests an element of self-organisation which is
biologically appealing. Third, delays in signal transmission are inherent in all
biological neuronal networks. The nerve impulse takes a period of time to travel the
length of the axon to its target neurons which, in turn, take time to summate their
inputs and produce their response. Fourth, when applied to neural networks, the
feedback control method amounts to delayed inhibition, which is a common element

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 295-300



of many natural neuronal systems. Consequently, the delayed feedback method is
considered to be best suited to the control of chaos in neural networks.

The delayed feedback method of chaos control used here is modified from a method
originally proposed by Pyragas [8]. Pyragas’s method was applied to continuous time
systems which have a measurable output variable, say y(t), and an input signal, F(t):
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Where P(y,x) and Q(y,x) which govern the chaotic dynamics of the system, and x,
which denotes all of the remaining system variables, are assumed to be unknown.
When the control signal F(t) is zero, the system (1) is governed by a chaotic attractor.

F(t) attempts to nudge the system back to a state in which output variable y repeats a
value it had at the earlier time specified by the delay�. In this way, F(t) encourages
the system to follow a periodic trajectory with periodicity �. As the system
approaches the periodic trajectory, F(t) will become very small. UPOs of varying
periods and periodicities can be controlled by this method.
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Figure 1 Overview of the Chaotic Neural Network Architecture

Chaotic Neural Network Model

We have designed a network model which has a neural implementation of the delayed
feedback method of chaos control described in the previous section. An overview of
the network’s architecture is illustrated in Figure 1. The network has three layers.
The first layer consists of a set of units which receive dynamic input signals. This
input layer is fully connected to the units in the second layer which is made up of
clusters of inhibitory units. All of the units in a particular inhibitory cluster are
connected to the same unit in the chaotic layer. Each unit in the chaotic layer is fully
connected with the other units in that layer via lateral connections.
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Each unit in the Chaotic Layer is governed by the following discrete time equations
which have been modified from [10]:

y t y t f y t a w x t k z ti i i ij j ij
j i

M

ij j
j

N
( ) ( ) ( ( )) ( ) ( )+ = − + + − +

≠ =
� �1

1
ω α τ (2)

x t f y ti i( ) ( ( ))+ = +1 1 (3)
where yi(t) is the internal state of unit i at time t, � (0 < � <1),� (� > 0) and a are
parameters of the Aihara model, M is the number of units in the Chaotic Layer and N
is the number of units in each inhibitory cluster. The connections between units in the
chaotic layer have a weight denoted by wij and a time delay denoted by �ij. xi(t) is
the output activation of chaotic unit i at time t. The weights of connections from the
inhibitory units to the chaotic units are denoted by kij, and the activation of chaotic
unit j at time t is denoted by zj(t). f(y) is given by:
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When the Inhibitory units are inactive for a period of time (i.e. the last term of
equation (2) is zero for a number of time steps) the dynamics of equations (2) and (3)
are governed by a chaotic attractor.

The units in the inhibitory layer are divided into clusters, with one cluster for each of
the units in the chaotic layer. The purpose of each inhibitory cluster is to apply
feedback control to stabilise the associated chaotic unit into a UPO. Each inhibitory
unit receives two inputs from the chaotic unit associated with that cluster. The first
input is xi(t), which the activation of the chaotic unit i at time t. The second is xi(t -
�ji), which is the activation of chaotic unit i at time t - �ji, where �ji is a randomly
selected time delay. An important feature of the architecture is that each inhibitory
unit has a different randomised time delay connection with the associated chaotic unit.

The inhibitory units within a cluster compete with each other for the right to attempt
to control the associated chaotic unit. At each time step, only one unit from the
cluster will win the right to apply control to the chaotic unit. The competition is
based on the value of h(t), which is given by
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where L is the number of input units, and Ik(t) is the activation of the kth input unit at
time t. The inhibitory unit with the smallest value for h(t) at that time step wins and
has an activation value calculated by the following equation:
z t x t x tj i i j i( ) ( ) ( ),+ = − −1 τ (6)

All other units in that inhibitory cluster have their activation values set to zero for that
time step. The value z(t) is the control required to stabilise an orbit in the associated
chaotic unit with period�ij.

The input layer is fully connected to the units in the inhibitory layer. These
connections are weighted and instantaneous (i.e. there are no time delays). In the
model presented in this paper all the weights from the input layer to the inhibitory
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layer are set to 1. The activations of the input units at each time step are governed
entirely by the input sequences consisting of discrete values in the range 0 to 1.

3 Experimental Results

In this section we present some preliminary results from two experiments with a
network consisting of 1 input unit, 3 units in each inhibitory cluster, and 4 chaotic
units. In each experiment, the network was iterated for 200 time steps before the
input signals were activated. The network was then iterated for a further 200 times
steps. The input patterns used were:

Input sequence (a) 1.0, 0.5
Input sequence (b) 1.0, 0.75, 0.5, 0.25, 0.01, 0.25, 0.75

The first experiment used input sequence (a) and the second used input sequence (b).
When the input was initiated at t=200, consecutive values of the input sequence
would be set as the activation value for the input unit on each time step, repeating the
sequence as many times as necessary (i.e. for sequence (a) this would be: I(1) = 1.0,
I(2) =0.5, I(3) =1.0, I(4) =0.5, etc.) Figures 3 and 4 show the times series of the
activations of some of the units during the first experiment.
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Chaotic neuron 2
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Figure 3 The activations of 2 units from the Chaotic Layer

It was important to ensure that the temporal pattern of activation for each unit in the
chaotic layer was truly chaotic in the absence of an input sequence. In each
experiment, the network was iterated 200 times without the presence of input to
generate a sufficiently long data series to demonstrate the presence of chaos. The
average Lyapunov Exponent for the activation of each chaotic unit during this first
phase was positive, indicating that they were truly chaotic (LE1 = 0.252, LE2 = 0.28,
LE3 = 0.255, LE4 = 0.19). The input sequence (a) was initiated at t = 200. Figure 3
shows that chaotic unit 1 was stabilised into periodic orbits almost instantaneously.
Chaotic unit 2 took longer to come under control. The average Lyapunov Exponent
for all 4 chaotic units in the input phase of the experiment are negative, indicated non-
chaotic activations (Table 1).
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A significant feature of these results is that each of the chaotic units is stabilised to
orbits with different periods (see Table 1). This corresponds to a distributed
recognition state for this input sequence. This recognition state (or representation) is
distributed both spatially and temporally: it is distributed spatially because of the
pattern of periods of stabilised orbits is distributed across the chaotic layer; it is
distributed temporally because the representation consists of stabilised periodic orbits,
which are temporal patterns of activation.

Figure 4 shows the activations of each of the units in the inhibitory layer during this
first experiment. During the first 200 time steps when there is no input to the
network, these units are inactive, allowing the chaotic layer to follow its chaotic
attractor. When the input sequence is activated at t = 200, the inhibitory units begin
to exert control on the chaotic layer. It should be noted that this control is shared
between the three units in each of the clusters.

Inhibitory cluster 1

-1

0

1

1
1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0
5

1
1
8

1
3
1

1
4
4

1
5
7

1
7
0

1
8
3

1
9
6

2
0
9

2
2
2

2
3
5

2
4
8

2
6
1

2
7
4

2
8
7

3
0
0

3
1
3

3
2
6

3
3
9

3
5
2

3
6
5

3
7
8

3
9
1

Inhibitory Cluster 2

-1

-0.5

0

0.5

1

1
1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

2
0
1

2
1
1

2
2
1

2
3
1

2
4
1

2
5
1

2
6
1

2
7
1

2
8
1

2
9
1

3
0
1

3
1
1

3
2
1

3
3
1

3
4
1

3
5
1

3
6
1

3
7
1

3
8
1

3
9
1

Figure 4 The activations of the units in 2 of the inhibitory clusters

The second experiment was carried out on the same network (i.e. identical in terms of
structure, weights and time delays) using input sequence (b). Table 1 shows the
results from this experiment. In this second experiment the chaotic layer was
stabilised to a different set of periodic orbits for this input sequence than were
stabilised for the first input sequence. In this way the network has produced a
different response to different input patterns.

4. Conclusion

We have constructed a chaotic neural network which is capable of differentiating
between two dynamic input signals by producing different dynamic responses. The
chaotic layer is responsible for producing these dynamic responses or
“representations” of the input. The representations consists of temporally and
spatially distributed patterns across the chaotic units. The temporal aspect of the
representation is the Unstable Periodic Orbits (UPOs) which the chaotic units are
constrained to follow by the inhibitory layer. There are an infinite number of UPOs
embedded within the attractors of chaotic systems. Consequently, there is the
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potential of developing networks with extremely large memory capacities and where
each memory is efficiently embedded in the dynamics of the network.

The results presented here are very provisional and only provide an indication of what
may be possible with chaotic neural networks of this kind. Future research will need
to assess this network’s ability to generalise and correctly classify unfamiliar input
pattern sequences. Although this is a fixed weight network, it does have inherent
adaptability thought the control of chaos mechanism in the inhibitory layer. This
mechanism is adaptive both in its response to the input patterns because of the
competitive element in each cluster and in its control of the chaotic layer, through the
selection of an appropriate strength of delayed feedback.

Chaotic
unit 1

Chaotic
unit 2

Chaotic
unit 3

Chaotic
unit 4

Input squence 1: Period of Orbit
Lyapunov Exponent

2
-0.61

8
-0.50

2
-0.46

18
-0.30

Input sequence 2: Period of Orbit
Lyapunov Exponent

24
-0.18

24(8)
-0.21

6
-0.19

2
-0.48

Table 1 Outline of the results from both experiments
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