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Abstract. We discuss three aspects of modelling information extraction
from visual data. Firstly, we discuss pre-processing issues in the context
of stability and biological plausibility. Secondly, we discuss the problem
of extraction of depth information from stereo data. Finally, we discuss
the extraction of (almost) independent features from a data set. We
use these three aspects of processing visual data to illustrate some of
the successes and issues involved in using unsupervised learning with
arti�cial neural networks on such data sets.

1. Introduction

Probably the most studied sensory system is the visual system and so this
system has provided researchers with fruitful inspiration on developing arti�cial
neural networks. Often such networks attempt to also mimic the properties of
the system which provided the inspiration. Sometimes the properties of the
system precede the arti�cial neural network i.e. the network is developed in
order to solve a particular purpose (perhaps to solve a problem which nature
has already solved) and only later is biological relevance considered.

This paper will give a brief overview of the type of work which has been
carried out with arti�cial neural networks in the context of vision processing.
However, there has been such a volume of work carried out in this area that we
will, of necessity, be very selective; a more comprehensive treatment is given in
[1] in which even although a complete section of 30 papers is devoted to vision,
the topic crops up in many other sections such as those dealing with biological
networks or learning. That this is not a one-way street is shown in the book
Vision Science [10] in which an appendix (widely referenced within the book)
is devoted to connectionist modeling.

The attractive (to connectionist modelers) perspective that modern vision
science o�ers is that vision is a computational process - one which takes place
within living beings but also one which can be mimic-ed by video cameras and
computers. This means that the process of vision is amenable to theoretical
analysis and based on this analysis to empirical modelling. [10] gives a very
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full account of this perspective from psychological, physical, biological and even
historical viewpoints.

In this paper, we will introduce briey a few of the topics which have ex-
ercised those interested in applying arti�cial neural networks to visual data.
We will concentrate on unsupervised learning because of our belief that self-
organisation has already been shown to be feasible in vivo and that connection-
ist modeling must aspire to similar levels of expertise. Perhaps, given how easy
animals �nd the extraction of information from visual data, we might wonder
why we are �nding it so diÆcult to emulate animal expertise. At the core of this
diÆculty is the fact that this process is an inverse problem: we are attempting
to construct a model of the world from perceived sensory images. However
it is not possible simply to construct an inverse mapping to do so, since the
process is essentially under-determined: for example, the image appearing on
the retina may be caused by a line x cm long y cm from the retina or a line 2x
cm long and 2y cm from the retina. Without other information (which may be
historical, rather than information being captured currently) we have no way
of determining the true situation.

In section 2, we consider pre-processing issues. Then, in subsequent sec-
tions, we consider textures, stereo visions and extraction of visual factors before
completing with a short section mentioning a few applications.

2. Sampling and Pre-processing

When training an arti�cial neural network, we require a good data set. If
wishing to investigate models of visual information processing, we have a po-
tentially in�nite data set to select from. Typically the data is �rst quantised,
often 1 byte per pixel for greyscale processing meaning that each pixel takes
values from 0 to 255. If we have colour processing, we often use 1 byte for each
of three colours per pixel.

If our task is to identify features from the images (perhaps face identi�-
cation) we must �nd and use the relevant parts of the image. If on the other
hand, we are interested in early processing of visual data, we may possibly only
sample from the images; for still images, we often use square patches taken ran-
domly from the image. For video sequences, we will use cubes composed of one
randomly chosen square patch taken forward in time.

However this range of values can lead to instability in the network or ex-
tremely long training times. Field [4]has suggested logarithmically prepro-
cessed images. This can be justi�ed for two reasons. Firstly, human physiology
appears to be more linear in the logarithm of contrast as opposed to simple
contrast. Secondly, log preprocessing may help alleviate problems of di�ering
illumination. By taking logarithms, local ratios in image intensity are trans-
formed into local di�erences of image intensity. Ratios of intensity should be
more robust to changes in illumination than are absolute di�erences.

The use of square or rectangular sections of an image may in itself bias
the results - edge e�ects may come into play. Therefore we may preprocess
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images by passing them through radially decaying windows such as Gaussian
windowing[5]. Recently based on the analytic work which has been carried out
on kernels in a supervised setting [15], the use of particular pre-processing based
on kernels has been investigated [12, 6]. This body of work provides a sound
analytically derived foundation for nonlinear pre-processing, and has already
been applied to image processing [3, 9]. Perhaps the most exciting aspect
of this area is the possibility that we can design kernels to match particular
invariances which we may require [13].

Finally we may consider transforming our data to the frequency domain.
Apart from the fourier transform itself, the most popular method in this area
involves wavelets1 The ability of wavelets to be used in multi-resolution analysis
[14] makes them the tool of choice for many involved in image restoration,
denoising, compression etc.

3. Stereoscopic Vision

Becker and Hinton suggest that that they wish to constrain the learning prob-
lem by restricting the features of interest to those which are liable to be useful
for later perceptual processing. In a general non-speci�c environment, there
are regularities ("coherence") in that any part of the environment is very likely
to be predictable from other close parts of the environment e.g. any object has
a �nite compact surface area and so there exists a set of points all physically
close to one another which share visually similar features. Similarly there ex-
ists temporal coherence in our environment. Also there is a coherence across
sensory modalities - we generally see and smell and feel an orange at a single
instant in time. This suggests that we should use coherence to extract informa-
tion from the input data; one objective that might be appropriate for a network
would be the extraction of redundancy (which gives rise to coherence) in raw
sensory data since we do not, for example, have to use sight, smell and touch
of an orange in order to identify the orange.

We could perform error descent on the squared error of the di�erence be-
tween the outputs but one diÆculty with this is that the network could simply
learn to output a constant value at both neurons x1 and x2. So we need to
force the neurons to extract as much information as possible but still ensure
that they are agreeing. This suggests that the optimisation criterion should be
to maximise the mutual information between the two neurons

Ia;b = H(a) +H(b)�H(a; b) (1)

= H(a)�H(ajb) (2)

Written this way we can see that by maximising the mutual information be-
tween the neurons, we are maximising the entropy (the expected information
output) of each neuron while minimising the conditional entropy (the uncer-
tainty left about each neuron's output) given the other's value. So we wish

1With this term, we include ridgelets, curvelets and any other -lets.
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each neuron to be as informative as possible while also telling us as little as
possible about the other neuron's outputs.

In a movie, the temporal sequence of images is correlated and additional
information can be extracted by looking for temporal as well as spatial struc-
ture. For example, a movie of a rigidly moving object contains highly redundant
information because the image of the object will appear in slightly di�erent spa-
tial locations on successive frames of the movie. Foldiak [?] showed how this
translation invariance can be captured in simple feedforward network that used
Hebbian synapses and an output layer of units with a short-term memory of
previous inputs. The network was trained with moving lines and the response
properties of neurons in the network were similar to those found in the visual
cortex. This principle was generalized by Stone, who applied it to learning
stereo disparity from dynamic stereograms.

We should also mention that [7, 8, 9] have developed both neural and kernel
methods for this problem and have related their methods to Canonical Corre-
lation Analysis. Canonical Correlation Analysis is a statistical technique used
when we have two data sets which we believe have some underlying correla-
tion. Consider two sets of input data; x1 and x2. Then in classical CCA, we
attempt to �nd the linear combination of the variables which give us maximum
correlation between the combinations. Let

y1 = w1x1 =
X
j

w1jx1j

y2 = w2x2 =
X
j

w2jx2j

where we have used xij as the jth element of x1. Then we wish to �nd those
values of w1 and w2 which maximise the correlation between y1 and y2. A
recent development [?] has shown that there are a family of networks which, by
solving the generalised eigenproblem, can �nd stereo disparity: it may be shown
[11] that an alternative method of �nding the canonical correlation directions
is to solve the generalised eigenvalue problem
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where � is the correlation coeÆcient. Taking w = [wT
1
wT

2
]T , we �nd the

canonical correlation directions w1 and w2 using

dw1

dt
= �12w2 � f(w1)�11w1

dw2

dt
= �21w1 � f(w2)�22w2

where the function f() must satisfy some rather simple constraints. Using the
facts that �ij = E(xix

T
j ); i; j = 1; 2, and that y1 = w1:x1, we may propose the
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instantaneous rules

�w1 = x1y2 � f(w1)x1y1

�w2 = x2y1 � f(w2)x2y2

This method is closer to that of [2] which also appears in this volume.

4. Extraction of Visual Factors

To provide a reference point for our work, the experimental procedure and
data used is similar to that outlined in one of the key papers in this area
[Olshausen et al, 1996]. In these experiments (and ours), the data comprises
sample patches from ten pre-processed images of natural scenes. The pre-
processing method pre-whitens the images to level out the power spectrum, as
low frequency aspects in images tend to dominate high frequency ones which
tends to have much less power. Note, as the �rst experiment illustrates, that
this particular method does not eliminate correlations between sample data
pixels but evens out the variances per pixel of the data set - similar methods
are often used to pre-process data before applying the statistical method Factor
Analysis.

Figure 1 illustrates the considerable di�erence between PCA and PFA when
applied to natural image patches. The PCA network only identi�es global spa-
tial frequency information, whereas the PFA implementation forms �lters that
are very localised. Note that these may both be implemented in very similar
linear arti�cial neural architectures - the essential di�erence is that the PFA
network has a half-wave recti�cation function on each of the output neurons.
The recti�cation function may be thought of as being used, to some degree, for
the identi�cation of sparse structure in the data. The �lters formed by the PFA
network resemble the centre-surround Ganglion cells of the mammalian visual
system. Now if we replace the recti�cation function in the PFA network by a
much more 'sparseness inducing' function, such as the soft threshold function
(described above) then the �lters are much more oriented in nature (Figure
2). The �lters formed by this implementation of the network now resemble the
structure of simple cells in the V1 area of the visual cortex.

5. Conclusion

This short paper can only scratch the surface of some of the work which is being
done in the area of arti�cial neural networks and visual data. We have only
discussed two interesting features of the �eld and have not begun to discuss
texture, colour, motion etc. Nevertheless, we consider that these two aspects
are an important part of a major and developing �eld and one in which we
believe that there is every chance of major success in the next few years. We
look forward to these years with greedy anticipation.
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Figure 1: The results shown on the left image are of an unsupervised neural
network used to perform PCA on the sample patches (12x12 pixels) from 10
natural images. The results shown on the right image are of an unsupervised
neural network used to perform FA on the sample patches (16x16 pixels) from
10 natural images. The PCA method forms �lters that resemble a Fourier basis
which respond to that data in a global manner, whereas, the FA network forms
�lters that are much more local in nature - centre surround in nature.

Figure 2: The results above illustrate the e�ect of making the function in our
Factor Analysis network more 'sparseness inducing'. More complex �lters are
formed, resembling cell structure in the V1 region of the visual cortex. Data
sample patches are 12x12 pixels in size.
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