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Abstract. In 1992 neurophysiologists [5] found an new type of cells in
areas V1 and V2 of the monkey primary visual cortex, which they called
grating cells. These cells respond vigorously to a grating pattern of ap-
propriate orientation and periodicity. A few years later a computational
model inspired by these findings was published [3]. The study of this
paper is to model a grating cell operator that responds in a very simi-
lar way as these grating cells do. Three different databases containing a
total of 338 real world images of textures were applied to the operator.
Based on these images, our findings were that grating cells respond best
to repetitive alternating patterns of a specific orientation. These patterns
are mostly human made structures, like buildings, fabrics, and tiles.

1 Introduction

Almost a decade ago, von der Heydt et al. [4, 5] reported on the discovery of
a new type of neuron in areas V1 and V2 of the monkey visual cortex, they
called them grating cells, because of their strong responses to grating patterns,
but weakly to bars and edges. They estimated that these cells makeup around
4 and 1.6 percent of the population of cells in V1 and V2, respectively. The
cells preferred spatial frequencies between 2.6 and 19 cycles per degree with
tuning widths at half-amplitude between 0.4 and 1.4 octaves. They found that
the cells are highly orientation selective and that the response is dependent on
the number of cycles. A minimum of 2-6 cycles is required to evoke a response
and leveled off at 4-14 cycles (median 7.5).
In this study we propose a computational model for these grating cells that

meet the response profiles of the grating cells measured by von der Heydt et
al. [5].
The paper is organized as follows: in Section 2 computational models of

simple and complex cells are briefly introduced. These models are known from
the literature, but since they form part of the grating cells they are included
for completeness and clarity. A computational model of grating cells is given
in Section 3. Also in this section the results of this model is compared with
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measured responses of grating cells and an existing model for grating cells.
Section 4 elaborates on the results of the model compared to the measured
responses by applying the model to the same test patterns used by von der
Heydt et al. In the same section the results of this model are compared with
an existing model for grating cells. In Section 5 we apply the model to three
databases to get better insights in the response of grating cells to real world
images. The last section gives the conclusions.

2 Simple and complex cell operators

The receptive field profiles of simple cells can be modeled by complex-valued
Gabor functions:

Ĝσ,λ,θ(x, y) = exp
(

i
πx1√
2σλ

)
exp

(
−x2

1 + γ2y2
1

2σ2

)
, (1)

where x1 = x cos θ + y sin θ and y1 = y cos θ − x sin θ. Parameters σ, θ, λ, and
γ represent scale, orientation, wavelength ( 2√

2σλ
is the spatial frequency), and

spatial aspect ratio, respectively. These Gabor functions have been modified
such that their integral vanishes and their one-norm (the integral over the
absolute value) becomes independent of σ, resulting in Gσ,λ,θ(x, y), for details
see [2]. They provide a transform of the image I(x, y) via spatial convolution.
Afterwards, only the amplitudes of the complex values are retained for further
processing: Cσ,λ,θ = ||I ∗ Gσ,λ,θ|| , (2)

which represents our model for complex cell responses. Orientations and scales
are sampled by θi = i·180

N and σj = σj−2 + σj−1, where i = 0 . . . N − 1,
j = 2 . . . S − 1, and σ0 and σ1 are known constants.

3 Grating cells

Von der Heydt et al. [4] proposed a model of grating cells in which the activities
of displaced semi-linear units of the simple cell type are combined by a minimum
operator to produce grating cell responses. This model responds properly to
gratings of appropriate orientation and to single bars and edges. However, the
model does not account for correct spatial frequency tuning.
Petkov and Kruizinga [3] proposed a model based on simple cell (with sym-

metrical receptive fields) input. Responses of simple cells are evaluated along a
line segment by a maximum operator, then a quantity q is used to compensate
for contrast differences. After that a point spread function is used to meet
the spatial summing properties with respect to the number of bars and length.
Except for the responses to the number of bars, this model does not meet the
criteria for the grating cells measured by von der Heydt et al. One of the weak-
points in this model is that it responds to other frequencies than the preferred
frequency.
We propose a grating cell operator that meets the response profiles of the

grating cells. This operator uses complex cell input responses, modeled by the
operator given in (2). Likewise as in the other models, we evaluate the responses
along a line segment perpendicular to the length of the bars of a grating. Unlike
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the other models, we let the length depend on the similarity of the responses
of the complex cells. No contrast normalization mechanism is incorporated in
the grating operator, since we believe that this is compensated for at the stage
of the center-surround cells already, see, e.g., Kaplan and Shapley [1].

3.1 Grating cell operator

The initial grating response is calculated as follows:

Gavg
σ,λ,θ,l(x, y) =

ρ

2l + 1

l∑
i=−l

Cσ,λ,θ(x+ xi, y + yi), (3)

where ρ is a response decrease factor. This factor is a measure for the deviation
from the optimal frequency and uniformity of the complex cell responses, and
will be discussed below. Parameter l denotes the length over which summation
of the complex cell responses will take place.
The variable length 2l over which the responses of the complex cells will

be evaluated is between the minimum number of bars 2Bmin and maximum
number of bars 2Bmax. Since the operations are performed on a discrete grid
we decompose the maximum length from the center of the line segment, in x-
and y-direction:

lx =
Bmax

√
2σ cos θ
λ

and ly =
Bmax

√
2σ sin θ

λ
. (4)

Similarly, we decompose the minimum length (Bmin) into mx and my. The
preferred barwidth (in pixels) equals σ

√
2λ.

Depending on the preferred orientation θ, the evaluation will take place in
x- or y-direction. Hence, parameters xi, yi, and lmax of (3) are orientation
dependent:

if
∣∣∣ ly
lx

∣∣∣ ≤ 1 and lx 	= 0
xi = i; yi = 
i ly

lx
+ 0.5�; lmax = |
lx + 0.5�|; lmin = |
mx + 0.5�|

else
xi = 
i lx

ly
+ 0.5�; yi = i; lmax = |
ly + 0.5�|; lmin = |
my + 0.5�|

(5)

where 
x� denotes the nearest integer value smaller than or equal to x. Length
l of (3) is determined by the maximum, minimum, and average response of the
complex cells along the line:

l = mini(li), lmin < i ≤ lmax, i ∈ Z and

if
Gmax

σ,λ,γ,θ,i(x,y)−Gavg
σ,λ,γ,θ,i(x,y)

Gavg
σ,λ,γ,θ,i(x,y)

≥ ∆ or
Gavg

σ,λ,γ,θ,i(x,y)−Gmin
σ,λ,γ,θ,i(x,y)

Gavg
σ,λ,γ,θ,i(x,y)

≥ ∆
li = i − 1 else li = lmax

(6)

Constant ∆, which is a uniformity measure, is a value larger than, but near
0. We used ∆ = 0.25 in all our experiments. The maximum and minimum G
responses are obtained as follows

GΩ
σ,λ,γ,θ,l(x, y) = Ωl

i=−l (Cσ,λ,γ,θ(x+ xi, y + yi)) , (7)

where Ω denotes the min or max operator.
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The determination of length l depends on the uniformity of responses of the
complex cells along a line perpendicular to orientation θ. If the responses of
these cells are not uniform enough the summation will be shorter than lmax, and
consequently the responses will be less strong. We model a linearly increasing
response between Bmin and Bmax:

ρl =
l

lmax
Bmax − Bmin

Bmax − Bmin
=

l − lmin

lmax − lmin
. (8)

The modeled response also depends on the uniformity of the complex cell re-
sponses. Since ρl gives a strong decrease for short lengths (it equals 0 for lmin),
we do not decrease the response for length between the minimum number of
bars and the minimum number plus one:

if (ls ≤ lmin) ρu = 1 else ρu = 1−
Gmax

σ,λ,γ,θ,ls
(x, y)− Gmin

σ,λ,γ,θ,ls
(x, y)

2∆Gavg
σ,λ,γ,θ,ls

(x, y)
(9)

where ls = l − lmax
1+�Bmax� is the length that is one bar shorter in length than l.

The evaluation on a slightly shorter length ensures that both criteria in (6) are
less than ∆, which implies that ρu ≥ 0. Multiplying factors ρl and ρu results
in the response decrease factor ρ = ρlρu from (3).
A weighted summation is made to model the spatial summation properties

of grating cells with respect to the number of bars and their length and results
in the grating cell responses at a single scale and orientation:

Gσ,λ,θ,β = Gavg
σ,λ,θ,l ∗ Gßσβ

λ
, (10)

where Gß is a two-dimensional Gaussian function. Parameter β determines
the size of the area over which summation takes place, values between 2 and 4
give good approximations of the spatial summation properties of grating cells.
Orientations are combined by an amplitude operator

Gallσ,λ,β =

√√√√N−1∑
i=0

(Gσ,λ,θi,β)
2
, (11)

where N denotes the number of orientations and θi = iπ/N , to yield the grating
operator at a single scale.

4 Properties of grating cells

Von der Heydt et al. [5] describe responses to different synthetic grating pat-
terns. In this section the properties of our grating cell operator are evaluated
for different settings of parameters λ and γ, and results for different settings
are compared with the measured data and the response properties of the model
of Petkov and Kruizinga [3].
Von der Heydt et al. performed different tests to obtain the properties of pe-

riodic pattern selective cells in the monkey visual cortex. In the first test they
revealed the spatial frequency and orientation tuning of the grating cells. From
the second test they obtained the response properties to an increasing num-
ber of cycles of square-wave gratings. Their third test described the response
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properties for checkerboard patterns by varying the check sizes. The fourth test
tested the responses to so-called “Stresemann” patterns. These patterns are
gratings where every other bar is displaced by a fraction of a cycle.
Finally they also tested the responses to contrast. The contrast profiles

of the magno and parvo cells [1] show similarities with the profiles given by
von der Heydt et al. [5]. In our experiments we will assume that contrast
normalization on the input data took place by means of these magno and
parvo cells, i.e. contrast normalization is applied to the input image. Hence,
the test for contrast responses will be omitted in this study.

4.1 Responses to test patterns

a) b) c) d) e) f) g) h) i) j) k)
Figure 1: Responses to square gratings with different orientations and frequen-
cies. Top row gives the stimulus and bottom row the responses of the modeled
grating operator. a) Grating cells respond vigorously to grating patterns of
preferred orientation and frequency. Responses decrease when the pattern dif-
fers from this pattern. b) and c) Responses strongly decrease if the gratings
are rotated slightly (10 degrees) and completely vanish at 20 degrees. d) and e)
Doubling or halving the frequency results in zero responses. f) and g) Grating
cells hardly respond to single bars or edges. h) and i) Increasing the checks in
a grating pattern results in a response decrease. j) and k) Stresemann patterns
show similar behavior as in h) and i): the stronger the deviation from a) the
weaker its response. The used parameters are λ = 1.00, γ = 0.25, β = 3.00,
Bmin = 0.5, and Bmax = 2.5.

Figure 1 illustrates that the modeled grating cell operator of (10) shows
similar behavior compared to the measurements carried out by von der Heydt
et al. [5]. Grating cells respond vigorously to grating patterns of preferred
orientation and frequency, but any deviation from this pattern results in a
decrease in response.

4.2 Orientation and frequency profiles

In this section the properties of grating cells will be modeled as accurate as
possible by tuning parameters λ and γ to yield similar responses as measured
by von der Heydt et al. [5] (denoted by “vdH ...” in the figures). In our model
this orientation bandwidth corresponds to approximately λγ = 0.25 (Fig. 2a).
Von der Heydt et al. found grating cells with both low and high frequency

bandwidth. The response curves of these cells (Fig. 2b and c) are different.
Most appropriate for the low frequencies is the model with parameters λ = 1.00
and γ = 0.25. Due to a problem that occurs for models with γ > 0.4, this choice
is most suitable for high frequencies, also. For γ > 0.4 there are also responses
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Figure 2: Measured and modeled response profiles of grating cells. a) Orienta-
tion, b) low frequency, and c) high frequency profiles. d) Frequency profiles for
different preferred bar width sizes (BW = 4, 7, 11, 18, and 29 pixels). Cycles
per degree have arbitrary units. Parameters used for d are λ = 1 and γ = 0.25.

to frequencies that are about a factor 3 larger than the preferred frequency
(Fig. 2b and c). The frequencies (in cycles per degree) are arbitrary units for
the model, since the frequency is determined by the size of the image and the
distance of the observer to the image.
Figure 2d illustrates the bandwidths for different preferred bar widths, re-

spectively 4, 7, 11, 18, and 29 pixels. The figure illustrates that these 5 “scales”
cover the full range of preferred frequencies (2.6 to 19 cycles per degree) found
by von der Heydt et al. If a preferred bar width of 4 pixels is equivalent to
19 cycles per degree than 2.6 cycles per degree corresponds to a bar width of
4× 19/2.6 = 29.2 pixels. The use of these five scales covers the full range well,
since the lowest response, between two preferred frequencies, drops at most 25
percent from the maximum response.
The grating cell operator of Kruizinga and Petkov, is available online (http:-

//www.cs.rug.nl/users/imaging/grcop.html) and was used with a band-
width of 1.0 and a periodicity that equals two times the preferred bar width.
The response profile (in our figures denoted by “K-P”) of this grating operator
shows globally two states: inactive or vigorously firing, which is caused by their
normalization quantity q. The choice of λ = 0.56 gives strong responses in two
intervals.

4.3 Profiles for different textures

Figure 3a illustrates that the measured results of the grating cells show in-
creasing response with increasing number of bars. In the same figure only one
modeled curve is shown, and although modeled grating cells with different pa-
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Figure 3: Measured and modeled properties of grating cells. a) Response profile
for increasing number of bars. b) Response to checks. c) Sensitivity to different
orientations of a checkerboard pattern. d) Responses to increasing shift of a
pair of bars, the so-called Stresemann pattern.

rameters show different response curves they all are similar to the responses of
the measured cells.
The modeled cells are not as robust to checks as the measured cells as

illustrated in Figure 3b. On the contrary the modeled cells are slightly less
sensitive to shifts of bars (Figure 3d). The responses to different orientations
depends on the orientation bandwidth. If λγ = 0.25 the orientation bandwidth
is similar to that of a measured grating cell, but its response to a checkerboard
pattern is low (about three times less) compared to that of the measured grating
cells. On the other hand when λγ = 0.35 the responses are comparable, but in
this case the orientation bandwidth is wider than that of the measured cell.

5 Oriented repetitive alternating patterns

It is clear that the model for grating cells responds to grating patterns, but the
question that rises is to what kind of real world patterns these cells respond.
The latter is important will the operator be successfully applied in an artificial
vision system. We used three (Brodatz, 111; ColumbiaUtrecht, 61; and VisTex,
166 images) freely available databases containing different textures.
In this application N = 16 orientations and S = 5 scales with σ0 = 4λ/

√
2

and σ1 = 7λ/
√
2 are used. The scales are combined with a maximum operator:

Gallλ,β =
S−1
max
i=0

Gallσi,λ,β (12)
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and applied to the images in the databases.
The grating cell operator is very selective and responded in only five (sam-

ples 38, 46, 49, 51, and 57) images in the ColumbiaUtrecht database. The op-
erator responded in 32 images of the Brodatz database. In the VisTex database
the operator responded to three (buildings, fabric, and tile) out of 18 categories
and within the categories it responded to about half of the images.
Based on these results, we conclude that grating cells respond well to man-

made objects that have oriented alternating repetitive patterns.

6 Conclusions

We presented a new model for grating cells that has similar response profiles as
monkey grating cells measured by von der Heydt et al. [5]. Unlike the previous
models of grating cells (von der Heydt et al. [4] and Kruizinga-Petkov [3])
the new model accounts for proper spatial frequency tuning. The Kruizinga-
Petkov model is an oriented texture operator, since it responds well to oriented
texture. Although it is inspired by the work of von der Heydt et al. [5], it is not
an accurate model of grating cells because the response profiles differ rather
strongly from that of the measured grating cells.
We applied the new model to 338 real world images of textures from three

databases. Based upon these results we conclude that grating cells respond to
oriented texture, to oriented repetitive alternating patterns to be precise, but
are insensitive to many other textures. In general, grating cells are not suitable
for texture detection. The grating cell operator responds well if the complex
cell responses perpendicular to the preferred orientation show similar strong
responses. In such case it is impossible to detect or extract relevant edges in
these areas by using complex cells. It therefore seems that grating cells could
play a key role in separating form from texture by giving inhibitive feedback
responses to the complex cells. A field which we want to explore in the near
future.
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