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Abstract. This paper illustrates how canonical correlation analysis can be used
for designing efficient visual operators by learning. The approach is highly task
oriented and what constitutes the relevant information is defined by a set of ex-
amples. The examples are pairs of images displaying a strong dependence in the
chosen feature but are otherwise independent. Experimental results are presented
illustrating the learning of local shift invariant orientation operators, representa-
tion of velocity, and image content invariant disparity operators.

1 Introduction

The need for a generally applicable method for learning is evident in problems involv-
ing vision. The dimensionality of typical inputs often exceed 106, effectively ruling
out any type of complete analysis. For this reason designing system capable of learn-
ing the relevant information extraction mechanisms appears to be the only possible
way to proceed.

In recent years, unsupervised learning algorithms based onmutual information
have received an increasing interest e.g. [11, 2, 3]. A set of linear basis functions, hav-
ing a direct relation to maximum mutual information, can be obtained bycanonical
correlation analysis (CCA) [8]. In this paper, we present a method based on CCA for
learning visual operators from examples. The following section gives a brief introduc-
tion to CCA. In section 3, the method for learning from examples is described. The
method is exemplified by a number of experiments, which are presented in section 4.

2 Canonical correlation analysis

CCA finds two sets of basis vectors, one in each signal space, such that the correlation
matrix between the signals described in the new basis is a diagonal matrix. A subset
of the vectors containing theN first pairs defines a linear rank-N relation between the
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sets that is optimal in a correlation sense. It has been shown that finding the canonical
correlations is equivalent to maximizing the mutual information between the sets if
the underlying distributions are elliptically symmetric [9].

Consider two random variables,x andy, from a multi-normal distribution. Con-
sider the linear combinations,x = wT

x (x�x) andy = wT
y (y�y), of the two variables

respectively.x denotes the mean ofx. The correlation betweenx andy is given by

ρ =
wT

x Cxywyq
wT

x CxxwxwT
y Cyywy

: (1)

whereCxx andCyy are the nonsingular within-set covariance matrices andC xy is the
between-sets covariance matrix. The maximum ofρ with respect tow x andwy is the
largestcanonical correlation. A complete description of the canonical correlations is
given by: �
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where: ρ; λx; λy > 0 andλxλy = 1. Equation 2 can be rewritten as:8<
:

C�1
xx Cxyŵy = ρλxŵx

C�1
yy Cyxŵx = ρλyŵy

(3)

Solving equation 3 givesN solutionsfρn;ŵxn;ŵyng; n = f1::Ng. N is the minimum
of the input dimensionality and the output dimensionality.ρ n are thecanonical corre-
lations [8]. More details can be found in [4].

3 Learning visual operators from examples

The basic idea behind the proposed method, illustrated in figure 1, is to analyse two
signals where the feature that is to be represented generates dependent signal compo-
nents. The signal vectors fed into the CCA are image data mapped through a function
f . In general,f can be any vector-valued function of the image data. The choice off
is of major importance as it determines the representation of input data for the canon-
ical correlation analysis. It isf that gives the desired invariance properties. Other
authors have proposed nonlinear extensions to CCA, which includesf in the learning
process [1, 10]. In this case, however, we have used a fixed functionf .

The training data are presented in pairs such that the features for which we want
to find a representation vary in a correlated way. Other features, for which we want
the representation to be invariant to, are varied in an unordered way. In this way, the
desired features are captured by the CCA.

4 Experimental results

The proposed method is exemplified by a number of experiments. Due to the limited
space, the descriptions of the experiments are very short. For more information, please
see the references.
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CCAf f

Figure 1: A symbolic illustration of the method of using CCA for finding visual oper-
ators.

4.1 Local orientation

It is shown in [4] and [7] that iff is an outer product and the image pairs contain sine
wave patterns with equal orientations but different phase, the CCA finds linear com-
binations of the outer products that convey information about local orientation and are
invariant to local phase. Figures 2 and 3 show results from a similar experiment, this
time using image pairs of edges having equal orientation and different, independent
positions. Independent white Gaussian noise to a level of 12 dB SNR was added to all
images before training. The noise forces the CCA to develop robust operators with as
little noise-sensitivity as possible.

Figure 2: Projections of Fourier components on canonical correlation vectors 1 to 8.

Figure 2 show the projections of Fourier components on canonical correlation vec-
tors 1 to 8. The result shows that angular operators of orders 2, 4, 6 and 8 have been
formed and are important information carriers. The magnitude of the projections are
close to shift-invariant having a position dependent variation in the order of 5 %.

Performing an eigenvalue decomposition of the canonical correlation vectors the
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Figure 3: Spectra of eigenimages interpreted as complex quadrature filter pairs.

corresponding linear combinations, in the outer product space, can be seen as quadratic
combinations of linear filters [4]. The linear filters (eigenimages) obtained display a
clear tendency to form pairs of odd and even filters having similar spectra. Such
quadrature filter pairs allow for a local shift-invariant feature and are functionally
similar to the orientation selective ‘complex cells’ found in biological vision. Figure
3 shows the spectra of four such filter pairs. The two left spectra are from canonical
correlation vector one and display selectivity to orientations 45 and 135 degrees. The
two right spectra are from canonical correlation vector two and display selectivity to
orientations 0 and 90 degrees.

4.2 Generation of motion representation

The basic idea in this experiment is to feed filter output to the CCA in such a way
that velocity is the only common information in the two inputs. Therefore the input
is taken from two windows moving with the same velocity and in the same direction.
Each window consists of 9 points i a square grid.

The steps were taken with a velocity vector that was randomly changed every step
with a change of -1, 0 or 1 in each direction. The norm of the velocity vector was lim-
ited to 5 (pixels per step). For each step, quadrature filter output from the image was
multiplied by the conjugate of the corresponding filter output from the previous step.
The multiplication with the conjugate extracts the phase difference between the two
steps which contains information about the motion. 8 filters were used which gives
72-dimensional complex vectors. These vectors were then normalized and divided
into a real and an imaginary part. The resulting pair of a 144-dimensional vector from
each window was then used as input to the CCA.

To visualise the resulting velocity representation, the filter response vectors for
different velocities were projected onto the three most significant CCA-vectors. In
figure 4 (left), the projections onto the first two CCA-vectors are plotted and at each
point, the true direction of motion is indicated with an arrow. The clusters in the
middle of the figure are caused by the quantization of the velocity in whole pixels
per time unit. Figure 4 (middle) shows the projections onto the first and the third
CCA-vector. In this plot, also the magnitude of the true velocity is indicated as the
length of the arrow. From these two views, we see that the CCA has generated a
three-dimensional representation of the velocity approximately on the surface of a
sphere. In the first two dimensions, thedirection is represented, while themagnitude
of the velocity also uses the third dimension. A stylised version of the generated 3D
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Figure 4: Projections of motion induced signals onto the first two canonical vectors
(left) and the first and the third canonical vectors (middle). The true direction of
motion is indicated as arrows. To the right is a stylized version of the generated 3D
velocity representation.

Figure 5: Result on a stereo pair of Pentagon.

representation is shown to the right in figure 4. For more information, see [5].

4.3 Local disparity

An important problem in computer vision that is suitable to handle with CCA is stereo
vision, since data in this case naturally appear in pairs. In [4, 6], a novel stereo vision
algorithm that combines CCA and phase analysis is presented. It is demonstrated that
the algorithm can handle traditionally difficult problems such as: 1. Producing multi-
ple disparity estimates for semi-transparent images, 2. Maintain accuracy at disparity
edges, and 3. Allowing differently scaled images.

Canonical correlation analysis is used to create adaptive linear combinations of
quadrature filters. These linear combinations are new quadrature filters that are adapted
in frequency response and spatial position so that the correlation between the filter
outputs from the two images is maximized. Figure 5 shows the resulting disparity
estimates on a well known test image pair.
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5 Conclusions

We have presented a method for learning visual operator by canonical correlation
analysis. Experimental results indicate that the proposed method is applicable on a
wide range of different visual tasks.
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