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Abstract. We show that neither linear nor static nonlinear opera-
tions in computational models are capable of precisely reproducing the
observed characteristics of retina ganglion cells (RGCs) responding to
dynamic stimuli. In particular, velocity tuning of single cells stimulated
by uniform motion and the signaling of motion starts and stops by a
RGC population are considered. In both cases, the consideration of a
dynamic non-linear feedback loop originally introduced to explain con-
trast gain control e�ects brings the temporal properties of the model into
agreement with experimental �ndings from multielectrode recordings.

1 Introduction

In biological visual systems, complex image processing is known to occur as
early as on the retinal level. The result of this processing is the spiking activity
of retinal ganglion cells (RGCs), which is transmitted to higher visual centers
via the optic nerve. Since the corresponding �ring rates are always positive, a
spatio-temporal convolution of the visual scene followed by a static recti�cation
appears to be the simplest appropriate choice for mapping retinal function onto
a mathematical model [6].

However, there are additional non-linearities that contribute to retinal pro-
cessing [5]. For example, a major characteristic of retinal responses is the satu-
ration at high stimulus contrast. There is general agreement that this contrast
dependence is not, as one could expect, mediated by a static non-linearity, but
by a dynamical feedback loop. This discovery dates back to 1978, when Shap-
ley and Victor [8] found that stimulus contrast modulated the time course of
retinal responses in a non-trivial way. Despite the fact that this contrast gain
control (CGC) mechanism is now well-characterized in terms of mathemati-
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cal modeling, its function for image processing is still unclear. In this paper,
we use mathematical modeling and extracellular multi-electrode recordings of
RGC activity to show that dynamical CGC is a key factor in the processing of
motion patterns, and conclude that one of its major functions is to enable a
representational tracking of stimulus movement.

2 Computational Retina Model

In order to study the e�ects of dynamical CGC on the responses of RGCs, we
used the following model of retinal response generation. The spatiotemporal
stimulus contrast pattern s(r; t) is �rst convolved with a kernel function K(r; t)
that resembles the receptive �eld properties of individual RGCs,

u(r; t) = g(r; t) [K(r; t) � s(r; t� Æ)] : (1)

g(r; t) is a modulation factor to be speci�ed below, Æ is the response latency,
and \�" denotes a convolution. From the activation u(r; t), the �ring rate
pattern of the RGCs, f(r; t), is obtained by recti�cation,

f(r; t) = ~� [u(r; t) + �]
+

(2)

where ~� and � � 0 determine scale and baseline value, respectively, [x]+ :=
xH(x) is the recti�cation operator, and H(�) is the Heaviside step function.
The kernel function K(r; t) in (1) is assumed to factorize into a spatial and
a temporal part, K(r; t) = Ks(r)Kt(t), where the former exhibits a spatial
\di�erence of Gaussians" pro�le, and the latter acts as a high-pass �lter [6]:

Ks(r) =
g+

2��2+
exp

�
�

r
2

2�2+

�
�

g
�

2��2�2+
exp

�
�

r
2

2�2�2+

�
; (3)

Kt(t) = Æ(t)� �H(t) exp(��t) : (4)

The parameters g+ and g
�

determine the relative weights of center and sur-
round, respectively, while �+ and ��+ (with � > 1) are their diameters. In the
temporal part, ��1 is the decay time constant of the response, and Æ(t) denotes
the Dirac delta function. The numerical values for the parameters Æ=100ms,
g+ =3, g

�

= 0:8g+, �+ = 80 µm, � =3, and �=4Hz could be determined by
matching the model to other experiments [9, 3, 1].

Berry II et al. [1] suggested a CGC feedback loop involving a low-pass
temporal integration of the activation,

v(r; t) := B u(r; t) � [H(t) exp(�t=�)] ; (5)

transformed into a local modulation factor g(r; t) 2 [0; 1] for the activation via

g(r; t) =
1

1 + f[v(r; t)]+g4
: (6)
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Strength and time course of the CGC modulation are determined by the pa-
rameters B and � , respectively. Incorporating this feedback loop into our retina
model generates a delayed suppression of high, sustained activation, thus al-
tering the temporal characteristics of RGC �ring. Choosing � = 170ms and
B=85Hz yields good agreement with the results of Ref. [1].

3 Contrast Gain Control and Tuning Properties

Time-averaged response properties of single RGCs are conventionally summa-
rized in tuning curves. In order to quantify the e�ect of CGC on the time-
averaged response of RGCs, we therefore studied their tuning properties with
respect to stimulus contrast and velocity with and without CGC. Fig. 1a shows
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Figure 1: Tuning curves of model retinal ganglion cells with and without dynamical
contrast gain control. (a) Mean response �ring rate with (solid) and without (dashed)
gain control as a function of the contrast of a continuously moving dark bar (velocity
0.44 µm/ms, width 133ms) in front of a white background. (b) Mean response �ring
rate of a model RGC with (solid) and without (dashed) gain control as a function of
the velocity of the bar from (a) at 100% contrast. Inset: same data in a log-log plot.

that the CGC feedback yields the expected contrast saturation of the response.
In addition, it exerts a non-trivial e�ect on the velocity tuning, as shown in
Fig. 1b. In contrast to the tuning curve for RGCs without CGC, the CGC
model cell exhibits a velocity tuning that is closer to a power law (straight
line in the log-log plot) with exponent � 0:3 over a wide range of velocities.
Power-law velocity tuning of this type has been reported frequently in studies of
RGC response properties, e. g. [4, 7]. Thus, CGC contributes to the empirically
encountered form of time-averaged contrast and velocity tuning of RGCs.

4 Role of Dynamic Contrast Gain Control in

Motion Processing

Since the CGC feedback loop implemented in our model involves a temporal
integration, it also alters the time course of RGC responses. This e�ect was
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demonstrated by a study that investigated the response of individual RGCs to
a continuously moving bar, which led Berry II et al. [1] to the conclusion that
CGC is involved in retinal motion processing. They found that the peak of
retinal activity is shifted in the direction of stimulus motion, so that a \motion
anticipation" e�ect results. This suggests that retinal CGC may be responsible
for the psychophysical ash lag e�ect, which, however, turned out not to be the
case [2]. Thus, the function of dynamical CGC is still controversially discussed.

Here we pursue the idea that CGC plays a role in the formation of a popu-
lation code for stimulus motion patterns. As a stimulus, we used a white light
bar (0.1mm wide) performing a stepwise motion perpendicular to its orien-
tation: Continuous movement with a speed of 0.44µm/ms lasted for 500ms.
The bar was then stopped but still visible for another 500ms before it started
moving again for another 500ms, and to on. This stepwise motion stimulus
was used as input to our retina model, and also applied in a multi-electrode
recording experiment with an isolated turtle retina. In the experiment, we ac-
quired action potentials from a population of RGCs, which were pooled over
many stimulus repetitions to �nd a population �ring rate at each time step.
The experimental preparation, the recording setup, and the data processing
are described in detail in another publication [10].

We will demonstrate that the CGC loop is necessary for the generation of
the reponse charateristics found empirically. This is achieved by comparing the
full model with CGC loop to a version without CGC loop (B = 0). The free
parameters ~� and � (and B for the full model) were determined by minimizing
the mean squared deviation between model and measured activity. Fig. 2
shows the population response to a succession of movement steps together with
the predictions of the di�erent model versions. Periods of stimulus movement
were from t = 0ms to t = 500ms and from t = 1000ms to t = 1500ms. The
response latency of about 100ms is clearly visible, after which the motion
onset is signaled by a sharp 300% rise in retinal population discharge rate.
Following motion o�set, the retinal activity exhibits an equally steep drop.
Thus, the retinal population signal closely follows the movement pattern. The
plot clearly shows that only the model with CGC loop is capable of reproducing
the steep rise of the population activity upon motion onset. The onset response
of the model without CGC is too slow, since it is governed by the time constant
of the linear kernel, ��1=250ms.

Even though the high value of ��1 is found in several independent measure-
ments [9, 3], it is an interesting question whether a model without CGC but
with a smaller time constant could yield a better agreement with the experi-
mental data. This turns out not to be the case: Allowing � to be adjusted in the
model without CGC does indeed yield a smaller time constant ��1=41:7ms,
but no better agreement with the experiment. This is shown in Fig. 2 (dotted
line), which demonstrates that this model version fails to exhibit the relatively
slow decay of the retinal activity following the stop of stimulus motion.
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Figure 2: Upper panel: Population response of turtle retinal ganglion cells (solid,
219 RGCs, 450 stimulus repetitions) to stepwise motion (500ms movement, 500ms
pause) of a bright bar (width 100 µm) as a function of time. Shaded area indicates
standard error. Corresponding output of the retina model with contrast gain control
loop (dashed), without contrast gain control (dot-dashed), and without contrast gain
control but with adjusted linear time constant � (dotted). Lower panel: Deviation
of the mean experimental population response from the three model scenarios as a
function of time.

5 Summary and Conclusions

In summary, we �nd that CGC has a profound impact on the response char-
acteristics of RGCs. First, the retina model with CGC feedback describes the
experimentally observed time-averaged contrast and velocity tuning of RGCs
better than a corresponding model without CGC. To investigate the e�ect of
CGC on the temporal course of responses, we used a stepwise motion pattern
of a bar stimulus. Multi-electrode recordings of a RGC population respond-
ing to this stimulus exhibited an extremely steep rise of activity shortly after
motion onset, and an equally steep drop after the stimulus stopped its motion
(Fig. 2). A comparison with several variants of our retina model lead to the
conclusion that CGC is a key ingredient in the formation of the movement pat-
tern population code. Models without CGC do either not reproduce the fast
onset response (for � �xed to biologically plausible 4Hz), or yield a reponse
decay that is too fast (for adjustable �).
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Thus, we have demonstrated that retinal responses to moving stimuli can
only be explained by computational models that include a contrast gain control
operation, i. e., negative feedback of lowpass �ltered recent activity. This result
suggests that one of the functions of CGC could be to allow the retina to
accurately follow changes of stimulus motion despite the relatively high time
constant in its linear operation.
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