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Abstract. We review the recently proposed method of Relevance Vec-

tor Machines which is a supervised training method related to Support

Vector Machines. We also review the statistical technique of Canonical

Correlation Analysis and its implementation in a Feature Space. We

show how the technique of Relevance Vectors may be applied to the

method of Kernel Canonical Correlation Analysis to gain a very sparse

representation of a data set and discuss why such a representation may

be bene�cial to an organism.

1. Introduction

We have previously developed both neural [1] and kernel [2] methods for �nding
correlations in a data set which are greater than linear correlations. The ker-
nel method was based on the supervised method of Support Vector Machines
(SVMs)[7] but lacked the inherent sparseness which SVMs generate - the �lters
found are functions of the whole data set. In this paper, we use the ideas from
Relevance Vector Machines (RVMs) to generate Canonical Correlation vectors
which are inherently sparse. We have previously [1] shown how canonical cor-
relation analysis networks can be used to identify stereo correspondence in a
data set. While this is still possible with kernel methods, the power of nonlin-
ear kernels is best illustrated on more diÆcult correspondence problems such
as the integration of information across di�erent modalities such as sight and
sound.
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2. Kernel Canonical Correlation Analysis

Canonical Correlation Analysis [3] is used when we have two data sets which we
believe have some underlying correlation. Consider two sets of input data, from
which we draw iid samples to form a pair of input vectors, x1 and x2. Then
in classical CCA, we attempt to �nd the linear combination of the variables
which gives us maximum correlation between the combinations.

Let �11 be the covariance matrix of x1 and similarly with �12 and �22.

Then de�ne K = �
�
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. We then perform a Singular Value Decompo-

sition of K to get

K = (�1; �2; :::; �k)D(�1; �2; :::; �k)
T (1)

where �i and �i are the standardised eigenvectors of KKT and KTK respec-
tively and D is the diagonal matrix of eigenvalues.

Then the �rst canonical correlation vectors (those which give greatest cor-
relation) are given by
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with subsequent canonical correlation vectors de�ned in terms of the subsequent
eigenvectors, �i and �i.

We have recently extended CCA into the Kernel domain [2]. Consider
mapping the input data to a high dimensional (perhaps in�nite dimensional)
feature space, F . Now, assuming the data has been centred, (we actually will
use the same trick as [5] to centre the data later) the covariance matrices in
Feature space are de�ned by

�11 = Ef�(x1)�(x1)
T g

�22 = Ef�(x2)�(x2)
T g

�12 = Ef�(x1)�(x2)
T g

and we wish to �nd those values w1 and w2 which will maximise wT
1
�12w2

subject to the constraints wT
1 �11w1 = 1 and wT

2 �22w2 = 1.
In practise we will approximate �12 with 1

M

P
i �(x1i)�(x2i), the sample

average.
We [2] have shown that, using (K1)ij = �T (xi)�(x1j) and (K2)ij = �T (xi)

�(x2j) we require to maximise �
TK1K

T
2
� subject to the constraints �TK1K

T
1
�

= 1 and �TK2K
T
2
� = 1. Therefore if we de�ne �11 = K1K

T
1
, �22 = K2K

T
2

and �12 = K1K
T
2 we solve the problem in the usual way: by forming matrix
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and performing a singular value decomposition on it as before

to get
K = (1; 2; :::; k)D(�1; �2; :::; �k)

T (4)
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where i and �i are again the standardised eigenvectors of KKT and KTK

respectively and D is the diagonal matrix of eigenvalues 1

Then the �rst canonical correlation vectors in feature space are given by

�1 = �
�
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with subsequent canonical correlation vectors de�ned in terms of the subsequent
eigenvectors, i and �i.

Now for any new values x1, we may calculate

w1:�(x1) =
X

i

�i�(xi)�(x1) =
X

i

�iK1(xi;x1) (7)

which then requires to be centered as before. We see that we are again per-
forming a dot product in feature space (it is actually calculated in the subspace
formed from projections of xi).

The method requires a matrix inversion and the data sets may be such that
one data point may be repeated (or almost) leading to a singularity or badly
conditioned matrices. One solution is to add �I , where I is the identity matrix
to �11 and �22 - a method which was also used in [4]. This gives robust and
reliable solutions however it detracts from the precise analytical foundations
of the method. The diÆculty comes about because the method, like other
unsupervised kernel methods, does not have the automatic identi�cation of im-
portant data points which the supervised method of Support Vector Machines
has. We will use the ideas from Relevance Vector Machines [6] to regain this
feature.

3. Relevance Vector Regression

The vectors found by the Relevance Vector Machine method are prototypical
vectors of the class types which is a very di�erent concept from the Support
Vectors whose positions are always at the edges of clusters, thereby helping to
delimit one cluster from another. Relevance Vector Regression uses a dataset
of input-target pairsfxi; tig

N
i=1 It assumes that the machine can form an output

y from

y(x) =

NX

i=1

wiK(x;xi) + w0 (8)

and p(tjx) is Gaussian N(y(x); �2). The likelihood of the model is given by

p(tjw; �) =
1

(2��2)�
N

2

expf�
1

2�2
jjt��wjj2g (9)

1This optimisation is applicable for all symmetric matrices (Theorem A.9.2, [3]).
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where t = ft1; t2; :::; tNg;w = fw0; w1; :::; wNg; and � is the N �(N+1) design
(data) matrix. To prevent over�tting, an automatic relevance detection prior
is set over the weights

p(wj�) =
NY

i=0

N(0; ��1) (10)

To �nd the maximum likelihood of the data set with respect to � and �2, we
iterate between �nding the mean and variance of the weight vector and then
calculating new values for � and �2 using these statistics. We �nd that many
of the �i tend to in�nity which means that the corresponding weights tend to
0. In detail, we have that the posterior of the weights is given by

p(wjt; �;�2) / j�j�
1

2 expf�
1

2
(w � �)T��1(w � �)g (11)

where

� = (KTBK +A)�1

� = �KTBt (12)

with A = diag(�0; �1; :::; �N ) and B = ��2IN .
If we integrate out the weights, we obtain the marginal likelihood

p(tj�; �2) / jB�1 +KA�1KT j�
1

2 expf�
1

2
t
T (B�1 +KA�1KT )�1tg (13)

which can be di�erentiated to give at the optimum,

�newi =
i

�2i
(14)

(�2)new =
jjt�K�jj2

(N �
P

i i)
(15)

where i = 1� �i�ii.

4. Application to CCA

We must �rst describe CCA in probabilistic terms. Consider two data sets
�1 = fxi

1
; i 2 1:::Ng and �2 = fxi

2
; i 2 1:::Ng de�ned by probability density

functions p1(x1) and p2(x2). Let there be some underlying relationship so that
y1 = w

T
1
x1 + �1 is the canonical correlate corresponding to y2 = w

T
2
x2 + �2.

Then y1 can be used to predict the value of y2 and vice versa. Let y1 = �y2+e1,
where � is the correlation coeÆcient.

Then from the perspective of x1, the targets, t1 is given by the other input
x2. i.e.

t1 = w2K2 (16)

So we are using the current value of w2 to determine the target for updating
the posterior probabilities forw1. Similarly, we create a target for updating the
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probabilities for w2 using the current value of w1. We then simply alternate
between the two Relevance Vector Machines in a way which is reminiscent
of the EM algorithm: from x1's perspective, calculation of the new values of
w2 corresponds to the E-step while the calculation of the new values of w1

corresponds to the M-step and vice-versa from x2's perspective.
We have carried out experiments on real and arti�cial data sets: for exam-

ple, we generate data according to the prescription:

x11 = 1� sin � + �1 (17)

x12 = cos� + �2 (18)

x21 = � + �3 (19)

x22 = � + �4 (20)

where � is drawn from a uniform distribution in [��; �] and �i; i = 1; :::; 4 are
drawn from the zero mean Gaussian distribution N(0, 0.1). Equations (17)
and (18) de�ne a circular manifold in the two dimensional input space while
equations (19) and (20) de�ne a linear manifold within the input space where
each manifold is only approximate due to the presence of noise (�i; i = 1; :::; 4).

Thus x1 = fx11; x12g lies on or near the circular manifold while x2 =
fx21; x22g lies on or near the line. We have previously shown [2] that the kernel
method can �nd greater than linear correlations in such a data set. We now
report that the current Relevance Vector Kernel method also �nds greater than
linear correlations but with a very sparse representation generally. Typically
the resulting vectors will have zeros in all but one position with the single
non-zero value being very strong. Occasionally, one vector, e.g. w1 will have
a single non-zero value whose correlation with all the other points will be seen
in its vector w2. However in all cases we �nd a very strong correlation. Figure
1 shows the outputs of a trained CCA-RVM network; the high correlation
between y1 and y2 is clear. We may also use the CCA-RVM network to �nd
stereo correspondences as before [1], however this task is relatively easy and
does not use the full power of the CCA-RVM network.

5. Conclusion

We have previously developed both neural [1] and kernel [2] methods for �nding
correlations which are greater than linear correlations in a data set. However
the previous kernel method found weight vectors which depended on the whole
data set. Using the Relevance Vector Machine to determine the Kernel correla-
tions, we still get greater than linear correlations but use only a small number
of data points to do so. For an organism which must integrate information
from di�erent sensory modalities (or indeed from the same modality but two
di�erent organs e.g. two eyes), this is an important saving since the organism
need not maintain all its previous memories from the two data streams. The
method automatically identi�es the most relevant memories which maximise
the correlation in feature space.
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Figure 1: The �gure shows a graph of y1 (horizontal axis) against y2 (vertical
axis) for a Relevance Vector CCA network trained on the negative distance
kernel. The high correlation is obvious.
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