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Abstract. Texture is an important characteristic di�erentiating objects

or regions of interest in an image. A variety of approaches to texture

analysis has previously been proposed; the approach in this paper is

from the stochastic �eld, whereby a two-dimensional Volterra model is

used to represent a texture �eld. Statistical moments are introduced as

a means of determining the Volterra model generator for an unknown

texture, with a view to using this model subsequently for recognition.

However, an overdetermined set of equations results. These can be solved

in the least squares sense using a conjugate gradient descent method with

multiple restarts.

1. Introduction

Texture analysis is an important issue within the wider topic of image processing
because of the variety of uses to which it can be applied e.g. content-based image
recognition, remote sensing, medical diagnosis, quality control, advanced image
compression and weather forecasting. It is a diÆcult task because of the non-
uniformity that exists in typical images. Perspective, shade, orientation and scale
can give otherwise identical textures di�erent appearances and can pose problems
for practical texture analysis. It has been suggested [2] that texture research can
be segregated into �ve categories: structural, statistical, spectral, stochastic and
morphological. This paper is concerned with the stochastic approach and the
Volterra �lter in particular.

The Volterra model and its application to texture analysis are described in
Section 2. The model can be described as a power series with memory [3] and
can account for nonlinearities in system identi�cation tasks through the inclusion
of higher-order terms. An added motive for a model-based approach is that
texture synthesis becomes possible, so allowing `seamless' texture mapping in
object modelling. Previous work [5] using a Volterra model for texture analysis
has shown promising results. Section 3 describes simulation results, giving an
insight into the potential of this approach before Section 4 concludes.
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Figure 1: Examples of texture generated by the �rst-order Volterra model:
(a) vertical texture generated by a (1 � 10) grid of coeÆcients; (b) horizontal
texture generated by a (10 � 1) grid; (c) texture generated by a (10 � 10)
diagonal grid; (d) texture generated by a (10� 10) non-diagonal grid.

2. The Volterra Model and Texture Analysis

A texture image can be described by a 2-D pth order Volterra system [5],

y[m;n] =

pX

i=1

Hifx[m;n]g;

where x[m;n] is driving noise, Hcf:::g is the cth-order Volterra operator, and

Hcfx[m;n]g =
X

i1;j1;:::;

ic;jc

hc(i1;j1);:::;(ic;jc)x[m� i1; n� j1]:::x[m� ic; n� jc];

where, hc(i1;j1);:::;(ic;jc) are the cth-order Volterra coeÆcients associated with the

model. In the following, we restrict ourselves to second-order models (c = 2)
because they are capable of handling nonlinearities without over-parameterising
the problem. Also, this model only requires the use of moments up to third-order
which is advantageous as moments become increasingly unreliable as their order
increases. A second-order model is given by,

y[m;n] =
X

i1;j1

h1(i1;j1)x[m� i1; n� j1]+

X

i1;j1;i2;j2

h2(i1;j1);(i2;j2)x[m� i1; n� j1]x[m� i2; n� j2];
(1)

where h1(i1;j1), h
2
(i1;j1);(i2;j2)

are the linear and quadratic coeÆcients respectively.
Zero mean images are used to simplify the moment expressions: Those with
a mean value other than zero can be accommodated by subtracting this from
every pixel. To constrain the Volterra model to be zero mean, the conditionP

i;j h
2
(i;j);(i;j) = 0 must hold, which can be enforced by letting h2(i;j);(i;j) = 0 for

all i; j. Figure 1 shows some examples of texture generated by the �rst-order
Volterra model.
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The coeÆcient values of (1) can be determined from a set of nonlinear equa-
tions [6], formed by equating the second- and third-order moments,

R[k; l] = Efy[m;n]y[m+ k; n+ l]g (2)

M [(k1; l1); (k2; l2)] = Efy[m;n]y[m+ k1; n+ l1]y[m+ k2; n+ l2]g;

with that of the Volterra model. The consideration of moments greater than
third-order is an issue that will need to be addressed more fully in the future.
Applying the second-order moment expression to the second-order Volterra ex-
pression of (1) results in an estimate for the second-order moment given by,

R̂[k; l] =
X

i1;j1

h1(i1;j1)Efx[m� i1; n� j1]y[m+ k; n+ l]g +

X

i1;j1;i2;j2

h2(i1;j1);(i2;j2)Efx[m� i1; n� j1]x[m� i2; n� j2]y[m+ k; n+ l]g:
(3)

By constraining the driving noise, x[m;n], to be zero-mean and Gaussian in
equation (3) involves averaging over products of Gaussian random variables. It
is well known that if x1; : : : ; x4 are zero-mean and jointly Gaussian then,

Efx1x2x3g = 0

Efx1x2x3x4g = Efx1x2gEfx3x4g+Efx1x3gEfx2x4g+Efx1x4gEfx2x3g:

If these random variables are further constrained to be stationary and white,
then averaging over the product of two of these random variables results in

Efx[i1; j1]x[i2; j2]g = �:Æ[i1 � i2; j1 � j2]; (4)

where � is the driving noise variance and Æ[m;n] is the 2-D Kronecker delta
function. This choice of zero mean Gaussian driving noise allows signi�cant
simpli�cation of the second-order moment expression (3). By applying (4),

R̂[k; l] = �
X

i1;j1

h1(i1;j1)h
1
(i1+k;j1+l) +

2�2
X

i1;j1;i2;j2

h2(i1;j1);(i2;j2)h
2
(i1+k;j1+l);(i2+k;j2+l):

Similarly, estimates for the third-order moments of the system are given by,

M̂ [(k1; l1); (k2; l2)] = 2�2(�1[(k2; l2); (k2 � k1; l2 � l1)] +
�1[(k1; l1); (k1 � k2; l1 � l2)] + �1[(�k1 � k2); (�l1 � l2)]) +

8�3�2[(k2; l2); (k2 � k1; l2 � l1); (k1; l1)];

where,

�1[(k1; l1); (k2; l2)] =
X

i1;j1;i2;j2

h1(i1+k1;j1+l1)
h1(i2+k2;j2+l2)

h2(i1;j1);(i2;j2)

�2[(x1; y1); (x2; y2); (x3; y3)] =X

i1;i2;i3;j1;j2;j3

h2(i1;j1);(i2;j2)h
2
(i1+x1;j1+y1);(i3+x2;j3+y2)

h2(i2+x3;j2+y3);(i3;j3)
:
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Coe�. Neighbourhood No. of CoeÆcients No. of Moment Equations
1�1 1 1
3�2 6 8
4�4 16 25
i�j i�j 2ij � i� j + 1

Table 1: A comparison of the number of Volterra coeÆcients with the number
of corresponding non-zero moment expressions.

To recover the model parameters, the di�erences in the model and texture
moments are minimised. The moment expressions form an overdetermined set,
as illustrated by Table 1, which shows that the problem is overdetermined by
a factor approaching two as the size of the model increases. A least squares
approach is adopted to solve the set of overdetermined equations,

min
�;h

J(f) =
X

i;j

(R[i; j]� R̂[i; j])2 +

X

i1;j1;i2;j2

(M [(i1; j1); (i2; j2)]� M̂ [(i1; j1); (i2; j2)])
2:

(5)

This cost function is minimised in an e�ort to locate the global minimum cor-
responding to the Volterra model parameter values that most closely describe
the unknown texture. The cost surface described by (5) will typically contain
many local minima (especially for a texture described by many coeÆcients) and,
consequently, a pure gradient descent technique will fail to locate the global so-
lution. To achieve speed and accuracy in locating the global solution, a multiple
start point, scaled conjugate gradient method is employed [4, 1]. Applied to a
real texture, the parameters corresponding to the global solution may be used
as features for recognition.

3. Optimisation and Simulation Results

Three types of synthetic texture image were generated using �rst-order Volterra
models of the following forms,

y1[m;n] = h1(0;0)x[m;n] + h1(0;1)x[m;n� 1] + h1(1;1)x[m� 1; n� 1]

y2[m;n] = h1(0;0)x[m;n] + h1(0;1)x[m;n� 1] + h1(1;0)x[m� 1; n] +

h1(1;1)x[m� 1; n� 1] + h1(0;2)x[m;n� 2]

y3[m;n] = h1(0;0)x[m;n] + h1(0;1)x[m;n� 1] + h1(1;0)x[m� 1; n] +

h1(1;1)x[m� 1; n� 1] + h1(0;2)x[m;n� 2] + h1(1;2)x[m� 1; n� 2]:

An ensemble of 10 textures is generated using each model and the relevant
moments obtained. Conjugate gradient descent (using start points determined
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Parameter Actual Value Mean Estimate Variance of Estimate
h1(0;0) 1.5 1.4983 2.37�10�4

h1(0;1) 0.8 0.8028 9.60�10�5

h1(1;1) 2.1 2.1034 1.10�10�4

Table 2: Conjugate gradients applied to the three coeÆcient texture, y1[m;n].

h1(0;0) h1(0;1) h1(1;0) h1(1;1) h1(0;2) Cost % Located

1.026 1.661 0.6261 2.057 0.436 5:54� 10�3 61
1.654 0.793 1.914 1.227 0.221 6:01� 10�2 39

Table 3: Conjugate gradients applied to the �ve coeÆcient texture, y2[m;n],
with fh1(0;0); h

1
(0;1); h

1
(1;0); h

1
(1;1); h

1
(0;2)g = f1:0; 1:6; 0:7; 2:1; 0:4g.

from a uniform distribution between 0.0 and 5.0) was then applied to recover
parameter estimates for each case and these are summarised in Tables 2, 3 and 4.

Second- and third-order moment values are determined from the synthetic
image by applying expressions (2) at each pixel in the image and using a neigh-
bourhood of surrounding pixels for the calculation. The texture images gener-
ated have dimensions of 256�256 pixels and a neighbourhood size of 32�32 was
used to calculate moments. The means of the moment values across the image
were then used as �nal estimates.

For y1[m;n], the estimated parameter values obtained (Table 2) are similar
to the original values used in generating the texture. The conjugate gradient
method consistently �nds the correct parameters with a low variance, suggesting
that the basin of attraction is large. This simple example validates the approach
outlined in this paper.

Table 3 summarises the parameter estimates from applying the technique
to y2[m;n], where two minima are found. The estimate corresponding to the
parameter values used to synthesise the texture is located correctly the majority
of the time and has a lower cost than the alternative solution.

The experiments were repeated for a more complex example, de�ned
by y3[m;n], resulting in the estimates summarised in Table 4. Here, the correct
estimate (row 2) is located with multiple start points. Our optimisation method

h1(0;0) h1(0;1) h1(1;0) h1(1;1) h1(0;2) h1(1;2) Cost % Located

1.201 2.141 0.368 1.549 0.757 1.083 9:53� 10�6 41.7
0.998 1.601 0.697 2.098 0.400 1.305 2:67� 10�10 8.3
1.300 2.099 0.400 1.601 0.698 0.998 6:13� 10�9 27.8
1.083 1.549 0.757 2.141 0.368 1.200 9:54� 10�6 22.2

Table 4: Conjugate gradients applied to the six coeÆcient texture, y3[m;n],
with fh1(0;0); h

1
(0;1); h

1
(1;0); h

1
(1;1); h

1
(0;2); h

1
(1;2)g = f1:0; 1:6; 0:7; 2:1; 0:4; 1:3g.
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can su�er from problems common to gradient descent methods; a more complex
texture would pose a harsher test. As more coeÆcients (or a higher-order model)
are used, the cost surface becomes more complex and a greater number of start
points will typically be required.

4. Conclusions

This paper shows how the Volterra model can be used for texture analysis. The
parameters of the model are recovered by minimising the di�erences between
model and texture image moments. The resulting optimisation problem is typ-
ically non-convex and this paper proposes a scaled conjugate gradients method
using multiple restart points. In this way, a hypothetical Volterra model gener-
ator for an unknown texture can be �tted and the parameter estimates used as
features for recognition or fed back into the model for synthesis. Initial results
show that the approach is promising for �rst-order models. Further investiga-
tions are required to validate the approach for higher-order models. As the work
is in an investigatory phase, application to real texture has not yet taken place
although this is a priority for the future.

At this stage of the work, convergence to a global minimum cannot be guaran-
teed. Future work will investigate alternativemodels to simplify the optimisation
problem without sacri�cing the virtues of the representation.
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