
Interpretation and Comparison of

Multidimensional Data Partitions

Esa Alhoniemi and Olli Simula

Neural Networks Research Centre
Helsinki University of Technology

P. O. Box 5400
FIN-02015 HUT, Finland
esa.alhoniemi@hut.fi

Abstract. In this paper, a novel visualization method for partitions of

multidimensional data is presented. It can be used for characterization of

one or comparison of two partitions. The method �nds the variables that

best describe a partition or di�erence between partitions. It is especially

useful when the data set size is large and there are many variables, i.e.,

the data dimension is high. The method has been implemented in a

software tool prototype which is used in analysis of operational states

of a paper machine. For simplicity, however, use of the method is here

demonstrated using the well-known Iris data set.

1 Introduction

In several applications, partitions of multidimensional data need to be charac-
terized or compared. Therefore, it is surprising that the topic has received very
little attention in the pattern recognition literature.

The partition interpretation problem is commonly faced in inspection of
results produced by clustering algorithms. Several methods for validation of
the results have been proposed, but the research has mainly concentrated on
determination of the number of clusters (see for example [10]), not character-
ization of the clusters. In [5], some methods for displaying grouping of data
can be found, but most of them are useful only when the number of samples
is small. Some (interactive) visualizations for hierarchical clustering have also
been proposed [2, 6]. However, it should be noted that clustering is by no
means the only way to partition data. For example, the partitions may as well
be two separate time periods of multidimensional process data which represent
normal and test runs of the process.

One possibility to visualize the high-dimensional data partitions is to project
them on a two-dimensional display. The most used method is linear Prin-
cipal Component Analysis (PCA). Also, several non-linear possibilities ex-
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ist [3, 8, 9, 12]. Even though all projections provide valuable information
on data structure, they cannot be very e�ciently used to indicate which vari-
ables create the structure. However, among arti�cial neural networks, the
self-organizing map [7] can be used for this purpose.

The method presented in this paper is useful in analysis of partitions when
there are many variables and also the number of samples is large. The variables
that separate one partition from the others or two partitions from each other
are identi�ed based on comparison of variable distributions in di�erent parti-
tions. Then, the variables are ordered according to their ability to discriminate
between partitions and shown in a visual display that at one glance roughly
shows contents of a partition or partitions.

2 Analysis of Partitions

Let us assume that there are N data vectors of dimension d. The vectors have
been divided into C separate partitions Xi; i = 1; : : : ; C so that each vector
belongs to exactly one partition. As the contents of the partitions are usually
unknown, the following two things are typically of interest.

� How can a single partition be characterized, i.e., which variables best
describe each partition and how?

� What are the di�erences and similarities between partitions?

Our method is based on the observation that the distributions of variables
that best describe a partition are maximally di�erent from the distributions
of the same variables in the union of all the other partitions. Comparison of
two partitions is essentially the same problem except that the �rst partition is
compared with the second one. The problem here is de�nition of �maximally
di�erent�, which is by no means unique. The most commonly used measures
of di�erence between variables are the statistics used in �2 test for discrete
variables and in Kolmogorov-Smirnov (K-S) test for continuous variables [11,
13], but any other similar measures could be used as well. However, from now
on we concentrate on continuous variables and the K-S statistic.

In K-S test, there are two series of observations: u1; : : : ; uN1
and v1; : : : ; vN2

,
which are sorted in ascending order; u0 and v0 are set to �1. Comparison
of the observation distributions is carried out using cumulative distributions
denoted here by F (x) and G(x):

F (x) = i=N1; ui�1 < x � ui; G(x) = i=N2; vi�1 < x � vi: (1)

The K-S statistic, i.e., the di�erence between F (x) and G(x) is computed by

D = max
�1<x<1

jF (x) �G(x)j: (2)

In the experiment in Section 3, the implementation presented in [11] was used.
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Characterization of a single partition. Let us denote the partition
of interest by Xc. First, the K-S statistic Dk for each variable k = 1; : : : ; d
is computed by comparing the variable distributions in the partition Xc with
the corresponding distributions in Xothers =

S
i;i 6=cXi. The K-S statistic Dk

describes the importance of variable k: the greater it is, the more important
variable k is in characterization of partition Xc.

Comparison of two partitions. Also in comparison of two partitionsXc1

and Xc2 , the K-S statistics Dk are computed for each variable k = 1; : : : ; d,
but now by comparing Xc1 with Xc2 . Now the value of Dk re�ects the ability
of variable k to separate between partitions Xc1 and Xc2 .

3 Experiment

The well-known simple Iris data set [1] was used to demonstrate the proposed
approach to visualization of partitions1. The data set contains 150 data vec-
tors of three di�erent Iris species: Setosa, Versicolor, and Virginica. There
are 50 instances of each, and all classes are known. All vectors contain four
measurements: sepal length, sepal width, petal length, and petal width.

In Fig. 1, a PCA plot of the data set is shown. Based on the visualization,
it seems that the Iris Setosa is clearly separate from the two other species.

PC 1

PC 2

PC 3

PC 4

Figure 1: PCA plot of the Iris species. Iris Setosa has been plotted using black,
Iris Versicolor using dark gray, and Iris Virginica using light gray color.

In Fig. 2, a partition display of Iris Virginica is shown. The variables have
been ordered from top to bottom in such a way that the ones that best describe
the partition are at top. The left panel contains the variable names. In the right

1The Iris data set is available at UCI Machine Learning Repository,

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/iris/.
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panel, data points describing Iris Virginica are plotted using black color, and
all the other points (describing Iris Setosa and Iris Versicolor) using gray color.
In addition, minimum and maximum values are shown around each of these
plots. This illustration immediately shows a general view, a �thumbnail� of the
partition and how it is related to the whole data set: the variables that best
separate the species from the two others are petal length and width, which are
large in this partition. The weakest separation is obtained using sepal width.
This can be veri�ed from Fig. 3, where histograms of the variables petal length
and sepal width are shown.
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Figure 2: Display of partition 3 (Iris Virginica). The data points that belong
to the partition are plotted using black and other points using gray color.
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Figure 3: Histograms of variables (a) petal length and (b) sepal width in parti-
tion 3 (Iris Virginica). The data points that belong to the partition are plotted
using black and other points using gray color.
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If Fig. 4, partitions corresponding to Iris Versicolor and Iris Virginica are
compared. Now the variables have been ordered from top to bottom according
to their importance in partition separation. In Fig. 1 it can be noted that these
partitions are not completely separate, but merely seem to overlap2. Also in
this case petal width and length are the variables that best separate the species,
but as it can be observed in Fig. 4, the separation is not perfect.
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Figure 4: Display of comparison between partitions 2 and 3 (Iris Versicolor and
Iris Virginica). The data points that belong to partition 2 (middle panel) and
3 (right panel) are plotted using black and other data points using gray color.

4 Conclusions

In this paper, a novel visualization for partitions of multidimensional data is
presented. It can be used for two di�erent purposes: to characterize a single
partition and to compare two partitions. Statistics adopted from the K-S test
or �2 test are used to order the variables in such a way that the most important
ones are shown �rst in the visualization. The method is useful especially when
the set of data points is large and the data dimension is high.

The proposed method has been successfully used in analysis and optimiza-
tion of paper machine control procedures [4] where the data dimension may
even be dozens and the number of samples is typically several thousands. The
method has been used in interpretation of clustering results as well as compar-
ison of data from two di�erent time periods. In both cases, it has proven to be
a valuable tool that improves characterization and comparison of partitions.

2It is a known fact that these two species are not linearly separable.
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