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Abstract. This work deals with the use of pruning ANNs in con-
junction with genetic algorithms for resolving nonlinear multicomponent
systems based on oscillating chemical reactions. The singular analyti-
cal response provides by this chemical system after its perturbation was
�tted to a gaussian curve by least-square regression and the estimates
were used as inputs to the ANNs. The proposed methodology was val-
idated by the simultaneous determination of pyrogallol and gallic acid
(two strong related phenol derivatives) in mixtures on the basis of their
perturbation e�ects on the classical Belousov-Zhabotinskii reaction. The
trained network estimates concentrations of pyrogallol and gallic acid
with a standard error of prediction for the testing set of ca. 4% and
5.7% respectively or 4.4%, 9% for di�erent sets of train/test patterns.
This result is much smaller than those provided by a classical parametric
method such as non-linear regression.

1 Introduction

The di�erential kinetic methodology is an e�ective way for resolving mixtures
of closely related chemical species with no prior physical separation. Meth-
ods for kinetic multicomponent determinations based on di�erent chemometric
tools have been proliferated in the last few years [1]. These methods do not
require the prior knowledge of the reaction rates involved in the analytical sys-
tem and they eliminate or reduce synergistic e�ects as well as other unknown
sources of non-linearity. However, the nonlinear chemical phenomena known
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as oscillating chemical reactions, which exhibit several non-monotonic regimes
such as regular oscillations, periodic doubling, quasi-periodicity and determin-
istic chaos, among others, has been the focus of much research in the area
of chemical kinetic in the last few years. On account of the great degree of
non-linearity showed by these system, only powerful multivariate calibration
techniques can o�er the suitable accuracy for the resolution of these mixtures.
We choose to use ANNs in this work considering the suitability of their features
to the proposed chemical problem.

ANNs based on di�erent versions of standard back-propagation (BP) learn-
ing algorithm have been used as highly powerful tools to solve a great variety
of problems in analytical chemistry [2, 3]. Recently, a current issue in this �eld
is the design of ANNs with a minimum size to solve real-world problems. One
way for reducing the chance that a fully connected complex model is formed
during the training process is to use regularization to constrain or eliminate the
network weights. A regularization function used is the sum of squares of the
weight magnitudes, but recently another regularization function are proposed
[4, 5].

This work deals with the use of pruning ANNs in conjunction with genetic
algorithms for resolving nonlinear multicomponent systems based on oscillating
chemical reactions. The singular analytical response provides by this chemical
system after its perturbation was �tted to a gaussian curve by least-square
regression and the estimates were used as inputs to the ANNs. Several prun-
ing neural network models were tested and compared and from the proposed
model the subsequent equations were derived, which allow the direct determi-
nation of the concentration of the components in the mixture in a hardware
implementation. The proposed methodology was validated by the simultaneous
determination of pyrogallol and gallic acid (two strong related phenol deriva-
tives) in mixtures on the basis of their perturbation e�ects on the classical
Belousov-Zhabotinskii reaction, the most widely known and studied oscillating
chemical system.

2 Basis of the method

Our approach to the resolution of mixtures of species based on their perturba-
tion e�ects on oscillating chemical reactions involves the development of a two
steps procedure in order to obtain nonlinear models for predicting the concen-
tration of the components in such mixtures. The approach was tested on the
simultaneous determination of two related phenol derivatives, such as pyrogal-
lol (P) and gallic acid (GA), through their perturbation e�ects on the classical
oscillating chemical reaction that involves the oxidation of malonic acid by
bromate ion in a sulfuric acid medium catalyzed by cerium(IV) salts, which is
known as the Belousov-Zhobotinskii reaction. This reaction exhibits periodic
changes in the concentration of some species that reect in potential changes
or cyclic color, which involves color changes between yellow [cerium(IV)] and
colorless [cerium(III)] (see regular oscillations in Figure 1).
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Figure 1: Analytical response obtained when the system is perturbed by in-
jecting a microvolume of the mixture sample

The �rst step of our approach for extracting the information in order to
select the inputs to the ANNs is based on the kind of the signal provided by
oscillating reaction after its perturbation. Thus, by inspection of this global
response, we have observed that the signals set (ti; Sti) was accurately �tted
by least-square regression to a gaussian curve if the time domain used ranged
from ti = 0 (injection time of the mixture in the oscillating system) to ti =
tm + 0:4tm, where tm is a centralization parameter associated with the time
corresponding to the maximum of the response curve. In this case, Sti is the
response variable, which is proportional to the concentration of the components
in the mixture, and ti the independent variable. It assumed that the change
of Sti with time (reaction rate) is proportional to its value at such time, the
proper time ti and a parameter, s, associated with the dispersion of the Sti
values with respect to that corresponding to tm. From these, it follows that the
following di�erential equation can be obtained once the variable ti was changed
for ti � tm:

@Sti
@(ti � tm)

= �
1

s2
(ti � tm)Sti (1)

The integration of this equation considering that Sti at time tm is given by
am (the maximum of the response curve) corresponds to a three parameters
gaussian. If additive errors are assumed, the nonlinear model is given by

Sti = ame
�

1
2

(ti�tm)2

s2 + "i (2)

The least squares principle was used to estimate the parameters by Levenberg-
Marquardt method, The estimates obtained, âm, ŝ and t̂m are used as inputs
to the ANN, in such way that all proposed neural network models have three
variables in the input layer.

A second step involves a network minimization design by successively re-
moving weights after the network has been trained to satisfactory performance.
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This learning process is carried out by using the back-propagation learning pro-
cedure EDBD [6], where the pruning algorithm is independent of the particular
training procedure. We used a variant of the algorithm proposed in [3]. In that
algorithm we deals with the design of regularization-pruning ANNs in con-
junction with genetic algorithms where our approach to network minimization
involves successively removing weights after the network has been trained to
satisfactory performance. We achieve this design objective by creating a fully
connected multilayer neural network with a number of weigths big enough for
our nonlinear regression model, then prune it by eliminating certain synap-
tic weights using a complexity regularization procedure where the complexity
penalty function de�ned by [5]:

�nwlog

nwX
k=1

jwkj (3)

represents the complexity of the network as a function of the absolute value of
the weight magnitudes, wk , where nW is the number of weights. The evaluated
function is based on the hypothesis that the "a priori" distribution of network
weights follows a Laplacian distribution. The � parameter is a regularization
term, which represents the relative importance of the complexity-penalty term
with respect to the performance-measure term, de�ned as:

f(w) =

nvX
p=1

(yp � op)
2 + �WE

WX
k=1

jwkj (4)

This term is the sum of the squared errors between the actual output values
(op) and the target output values (yp), and nT is the number of patterns for
the training set. Sigmoid and linear functions were used for hidden nodes and
output nodes, respectively; in addition, in order to avoid saturation problems
when sigmoid functions are used, the values of the inputs and outputs nodes
were normalized over the range from 0.1 to 0.9. Thus, the normalized input
values, ~a�m, ~s

� and ~t�m, and those for the output nodes corresponding to the
concentration of pyrogallol, [P ]� , and gallic acid, [GA]� .

3 Experimental section

The Levenberg-Marquardt algorithm was used in order to obtain the three
estimated coeÆcients. The convergence of the iterative process was achieved
with a tolerance of 0.0001 and a maximum number of iterations of 100. The
algorithm software for ANN [3], written in C language, was run on an IRIS
Release 6.5 in an Origin 2000.

Overall 27 synthetic samples (by triplicate) containing uniformly distribu-
tion concentrations of the analytes (pyrogallol and gallic acid) were prepared
as described below. We used randomly two replicates for the training set and
the other for the generalization set. The performance of the algorithm was
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pyrogallol
network
topology

data set
train/test

mean SD

SEP train SEP test Connec. SEP train SEP test Connec.
3:3:1 44/22 5.07 4.83 11.5 0.60 0.34 2.83
3:2:1 54/27 5.86 5.64 9.0 0.46 0.44 1.41
3:4:2 44/22 4.73 4.39 21.7 0.27 0.41 3.19

best worst
SEP train SEP test Connec. SEP train SEP test Connec.

3:3:1 44/22 3.79 4.19 14 5.67 5.19 14
3:2:1 54/27 4.76 4.65 8 6.22 6.12 9
3:4:2 44/22 5.22 4.08 19 4.83 5.27 22
3:3:2 54/27 5.57 4.40 18 5.97 5.17 19

gallic acid
mean SD

SEP train SEP test Connec. SEP train SEP test Connec.
3:2:1 44/22 5.44 5.66 9.7 0.36 0.17 0.67
3:3:1 54/27 10.80 10.01 11.1 0.44 0.85 1.91
3:4:2 44/22 5.13 6.01 21.7 0.29 0.30 3.19
3:3:2 54/27 9.78 9.52 18.2 0.21 0.38 0.91

best worst
SEP train SEP test Connec. SEP train SEP test Connec.

3:2:1 44/22 5.50 5.38 9 5.89 6.01 10
3:3:1 54/27 10.01 8.51 15 11.37 11.07 10
3:4:2 44/22 4.92 5.70 25 5.21 6.65 24
3:3:2 54/27 9.67 8.99 16 10.09 10.24 17

Table 1: Accuracy of the Algorithm Used with Various Network Topologies
and Data Set Sizes as Applied to the Resolution of Mixtures of Pyrogallol and
Gallic Acid

tested with various network topologies, which were running ten times in each
case. The accuracy for each model were evaluated from the results obtained
for both data sets by using the relative standard error of prediction (SEP)

SEP =
100

Ai

sPn

i=1 (Ai �
~Ai)2

n
(5)

where ~Ai and Ai are the found an expected values for the analyte concentration
in the mixture, �Ai is its average value, and n is the number of patterns used.
Analysis of variance (ANOVA) and the Student-Newman-Keuls (SNK) test
were used to evaluate statistically the performance of the di�erent models in
order to propose a network topology and data set sizes for the training and
testing sets. As can be seen from Table 1 the models with are better SEP
test and a less number of connections were a 3:4:2 network topology and a
44/22 data set train/test, and a 3:3:2 network topology which a 54/27 data set
train/test. The equations of the last proposed model can be seen from Table
2.
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Model 6 (Topology: 3:3:2; Connections: 18; Data Set: 54 train/27 test)

[P ]� = 1:54h1 + 0:37h2 � 0:78h3
[GA]� = �0:69� 1:74h1 + 1:89h2 + 1:22h3

h1 = (1 + exp(3:69� 0:07am � 3:54s))�1

h2 = (1 + exp(0:74� 3:71am + 1:5s� 0:38tm))�1

h3 = (1 + exp(0:8� 1:93am + 7:05s+ 2:3tm))�1

Table 2: Derived Equations From the Best ANN Model Obtained

4 Conclusion

That regularization pruning is an e�ective way of reducing network complex-
ity with a network topology where the estimates by NLR are included in the
input layer and three or four nodes are used in the hidden layer. The use of
estimated parameters of NLR as input, provide the information required by
the ANNs to discriminate among several kinetic curves for di�erents [P ]� and
[GA]� values. In summary, pruning ANNs have been shown to posses a high
potential for kinetic analysis, and, in general, as an analytical tool for deriving
quality information with substantial savings in time and in experimental and
computational costs.
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