
Relevance determination in learning
vector quantization

Thorsten Bojer, Barbara Hammer, Daniel Schunk,
and Katharina Tluk von Toschanowitz

University of Osnabr�uck, Department of Mathematics/
Computer Science, Albrechtstra�e 28, 49069 Osnabr�uck, Germany,

e-mail: hammer@informatik.uni-osnabrueck.de

Abstract. We propose a method to automatically determine the rel-
evance of the input dimensions of a learning vector quantization (LVQ)
architecture during training. The method is based on Hebbian learning
and introduces weighting factors of the input dimensions which are auto-
matically adapted to the speci�c problem. The bene�ts are twofold: On
the one hand, the incorporation of relevance factors in the LVQ archi-
tecture increases the overall performance of the classi�cation and adapts
the metric to the speci�c data used for training. On the other hand, the
method induces a pruning algorithm, i.e. an automatic detection of the
input dimensions which do not contribute to the overall classi�er. Hence
we obtain a possibly more eÆcient classi�cation and we gain insight to
the role of the data dimensions.

1. Introduction

Kohonen's learning vector quantization (LVQ) provides a very intuitive method
of learning a classi�cation based on a �nite set of training patterns [8]. So called
codebook vectors are adapted to the data such that their receptive �elds match
the support of the distribution of the respective class as accurately as possible.
Various modi�cations exist which ensure faster convergence of the algorithm
(OLVQ), a better adaptation of the borders of the receptive �elds to optimum
Baysian decision (LVQ2, LVQ3), an adequate initialization of the codebooks
according to the data distribution (LVQ+SOM) [7], a dynamic adaptation of
the number of codebooks (DLVQ) [3], or an adaptation for complex data struc-
tures [10], to name just a few. It combines ideas of unsupervised algorithms,
adaptation to the data with Hebbian learning, and supervised learning, adap-
tation according to the error signal provided by the desired output.

The success of LVQ depends crucially on the fact that the metric which is
used for training, usually the Euclidian metric, �ts the behavior of the clas-
si�cation which is to be learned. The algorithm is based on the assumption
that the dimensions are approximately equally scaled and equally important.
Hence, it is necessary to preprocess and scale the data accordingly. This may be
diÆcult to obtain in speci�c learning tasks since estimating the importance of
the input dimensions may require problem speci�c knowledge. Moreover, data
are often high dimensional and data dimensions may be correlated. Some mod-
i�cations of clustering algorithms exist which adapt the metric during training

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 271-276

to the speci�c setting. As an example, fuzzy-k-means clustering is modi�ed by
Gustafson and Kessel [5] or Gath and Geva [4] such that a problem speci�c
metric arises. However, these methods are time consuming since they require
matrix inversion and they lead to less intuitive training algorithms.

We propose a modi�cation of LVQ which introduces relevance factors to the
dimensions: relevance learning vector quantization or RLVQ, for short. The
relevance factors or input weights are adapted during training with supervised
Hebbian learning based on the error signals. The method can be motivated
based on the Hebb rule directly; alternatively, it can be seen as an adaptation
of the classical perceptron learning rule [9] for a correlated perceptron learning
task. After training, the weights constitute scaling factors for the respective
dimensions which are to be added to the Euclidian metric. Based on their
values, data dimensions may be identi�ed as not very important and they may
be pruned without increasing the error of the overall classi�er much. We test
the method on various arti�cial data and real life data.

2. The LVQ algorithm

Assume that a clustering of data into C classes is to be learned and a �nite
training set X = f(xi; yi) � R

n � f1; : : : ; Cg j i = 1; : : : ;mg of training data
is given. We denote the components of a vector x 2 Rn by (x1; : : : ; xn) in the
following. LVQ chooses a �xed number of vectors in Rn for each class, so called
codebooks. Denote the set of codebooks by fw1; : : : ; wKg and assign the label
ci = c to wi i� wi belongs to the c th class, c 2 f1; : : : ; Cg. The receptive �eld of
wi is de�ned by Ri = fx 2 X j 8wj (j 6= i! jx�wij < jx�wj j)g. The training
algorithm adapts the codebooks wi such that for each class c 2 f1; : : : ; Cg the
corresponding codebooks represent the class as accurately as possible. That
means, the di�erence of the points belonging to the c th class, fxi 2 X jyi = cg,
and the receptive �elds of the corresponding codebooks,

S
ci=cR

i, should be as
small as possible for each class. LVQ initializes the codebooks wi appropriately,
e.g. with random vectors or the center of gravity of the patterns of the respective
class, and iteratively updates the codebooks as follows:

repeat: choose (xi; yi) 2 X
compute wj such that xi 2 Rj

wj :=

�
wj + �(xi � wj) if yi = cj

wj � �(xi � wj) otherwise
(�)

where � 2]0; 1[is the so called learning rate. Obviously, the di�erent data
dimensions are ranked equally in the above algorithm and LVQ will fail if the
dimensions are not appropriately scaled.

3. The RLVQ algorithm

Assume that X and wi are chosen as before. In order to make a di�erent
scaling of the several input dimensions possible, we introduce input weights �1,
. . . , �n � 0. We substitute the Euclidian metric jx� yj by

jx� yj2� =

nX
i=1

�i(xi � yi)
2 :

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 271-276

Hence the receptive �eld of codebook wi becomes Ri
� = fx 2 X j 8wj (j 6= i!

jx � wij� < jx � wj j�)g. Substituting Ri by Ri
� in the above algorithm yields

a di�erent weighting of the input dimensions. Now the question arises of how
to choose the input weights �i appropriately. We start with �i = 1=n, i.e. the
standard Euclidian metric, and iteratively adapt the weights as follows:

repeat: choose (xi; yi) 2 X

compute wj such that xi 2 Rj
�

for all l:

�l :=

�
maxf�l � �jxil � wj

l j; 0g if yi = cj

�l + �jxil � wj
l j otherwise

(��)

for all l:

�l := �l=j�j

where � 2]0; 1[is a learning rate for the input weights. The above rule (**) is
either applied after regular LVQ training (RLVQi), after regular LVQ training
in common with additional updates for the codebooks � according to rule (*)
(RLVQii), or in common with rule (*) from the beginning of the training process
(RLVQiii). Since we are interested in online adaptation of both the codebooks
and the input weights, we use RLVQii or RLVQiii in the following.

The update (**) can be motivated by the Hebb paradigm: Assume that
the classi�cation of xi is correct, i.e. yi = cj . Then those input weights �l
are decreased most in (��) for which the l th component of the training point
di�ers considerably from the l th component of the codebook. In contrast, input
weights �l are little decreased for which both components are close together
and hence dimension l contributes to the fact that point xi is classi�ed correct.
Together with the normalization of � this results in an increase of weights �l i�
dimension l contributes to the correct classi�cation. Assume the classi�cation
of xi is wrong, i.e. yi 6= cj . Then those input weights �l are increased only
slightly in (��) where the l th component of the training point is close to the
l th component of the codebook. Because of the normalization of � precisely
those �l are decreased which contribute most to the wrong classi�cation of xi.

4. Comparison to perceptron learning

A di�erent motivation of learning rule (**) can be obtained if a correlated
perceptron training problem is considered. Assume the codebooks are �xed
and we would like to obtain weights �l such that xi 2

S
cj=yi R

j
� for as many

x 2 X as possible. We refer to such a problem as P (�) in the following. For
simplicity we assume that each class c is represented by only one codebook wc.
Then (xi; yi) is classi�ed correct i� jxi � wj j2� > jxi � wij2� for all j 6= i. This

can be further transformed to
P

l �lz
ij

l > 0 where zijl = (xil�wj

l)
2� (xil�wi

l)
2.

Hence, we obtain a perceptron training problem: Find positive weights of a
perceptron (corresponding to �l) such that all zij are classi�ed positive by
the perceptron. The standard perceptron algorithm yields the update �l =
�l + (xil � wj

l)
2 � (xil � wi

l)
2 if xi is classi�ed wrong. Splitting this adaptation

rule into two parts yields the updates �l = �l + (xil � wj
l)
2 if wj represents a

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 271-276

class di�erent from yi and �l = �l� (xil�wi
l)
2 if we consider the class yi. Since

we require �l � 0, we have to add a truncation if the above rule yields negative
values. The update (**) entirely decouples the two summands and adapts
proportional to the absolute distance of the components of the codebook and
the training point instead of the quadratic distance.

The comparison to standard perceptron training gives us further insight
into the complexity of the task we deal with. The above reasoning shows that
we can formulate (part of) our training task, the problem P (�), as a percep-
tron learning task. The converse is also possible: Assume a perceptron training
problem is given, i.e.: given points p1; : : : ; pm 2 Rn , �nd a vector � 2 Rn with
�i � 0 such that

P
�ip

j
i > 0 for the maximum number of points pj (each

perceptron problem can easily be transferred to this special problem with stan-
dard argumentation). This can be transferred to the following problem P (�):
given codebooks w0 = (0; : : : ; 0) and w1 = (1; : : : ; 1) and points z1; : : : ; zm,
where zij = (1 � pij)=2, �nd weights �i � 0 such that the maximum number

of points zj belongs to the receptive �eld R1

�. Since the number of points zj

which do not belong to R1

� coincides with the number of points pj which are
not classi�ed correct by the perceptron, this constitutes a cost preserving re-
duction from perceptron learning to problems P (�). Since perceptron training
in the presence of errors is NP-hard (even approximation within any positive
factor) [6], P (�) is NP-hard either if data are noisy or the clusters overlap.
Appropriate weights can be found in polynomial time assumed data are well
behaved and the clusters do separate.

5. Experiments

We split data randomly into a training set and a part which is used for tests
only. The reported results are the means of several runs. Each run is performed
until convergence with � = 0:1, � = 0:1 unless stated otherwise.

Arti�cial data without overlap: Data set 1 contains 3 classes each com-
prising 2 clusters with 15 points in each cluster in the �rst two dimensions
(see Fig. 1). In data set 2, we add four dimensions which are copies of di-
mension 1 and perturbed by Gaussian noise with variances 0:05, 0:1, 0:2, and
0:5, respectively. Furthermore, we add two dimensions with uniform noise with
support of diameter 1 or 0:4, respectively, and two dimensions with Gaussian
noise with variances 0:5 and 0:2, respectively. Hence the �rst two dimensions
are relevant for the classi�cation, dimensions 3 to 6 may partially substitute
dimension 1 with increasing noise added, the remaining dimensions do not con-
tribute to the clustering. We train 6 codebooks, 2 codebooks for each class,
with standard LVQ and RLVQiii on data sets 1 and 2. We obtain an accuracy
between 0:91 and 0:96 on training set and test set for data set 1 and LVQ
or RLVQiii, respectively. RLVQiii provides the same accuracy for data set 2,
whereas LVQ obtains an accuracy between 0:81 and 0:89 on data set 2. The
input weights determined by RLVQiii are �1 � �2 � 0:5 for data set 1, and
� � (0:13; 0:12; 0:12; 0:11; 0:1; 0:09; 0:1; 0:08; 0:07; 0:06) for data set 2. The re-
sult is stable, i.e. the ranking of the input dimensions provided by the weights
does not change signi�cantly for several runs. This ranking allows us to prune
precisely the dimensions which are irrelevant for this clustering.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 271-276

Arti�cial data with overlap: Data set 3 contains data with a considerable
overlap of the classes (see Fig. 1). Data set 4 adds the same noise to data set 3
as described for data set 2. LVQ, RLVQiii, and RLVQii yield a training and test
accuracy of about 0:8 for 6 codebooks on data set 3. LVQ yields an accuracy of
0:56 to 0:7 on training and test set depending on the separation into training
and test set on data set 4. RLVQiii obtains the better accuracy between 0:77
and 0:85, however, it shows instabilities, i.e. very bad accuracy of about 0:3
and a weighting of �1 >> �i for i > 1 in about a quarter of the runs. The
instabilities are avoided by RLVQii, which yields an accuracy between 0:79 and
0:86 depending on the random separation of the data into test and training set.
A typical vector � is (0:11; 0:12; 0:11; 0:09; 0:09; 0:09; 0:09; 0:09; 0:1; 0:1), hence
the irrelevant dimensions are detected.

Iris data: The task is to predict three classes of plants based on 4 numerical
attributes in 150 instances [1]. We train LVQ, RLVQii, or RLVQiii, respec-
tively with 6 codebooks and � = 0:1, � = 0:01. LVQ provides an accuracy
of 0:96 for training and test set. Surprisingly, the behavior is not perfectly
stable for a constant learning rate. The accuracy changes cyclically between
0:94 and 0:96. RLVQii and RLVQiii show stable behavior and approach an
accuracy 0:97 on the training set and 0:95 on the test set. Typical weights
� are (0:02; 0:01; 0:02; 0:89) for RLVQiii and (0:04; 0:05; 0:03; 0:87) for RLVQii.
Hence, the last input dimension is ranked as most important and the weights
are adapted such that the classi�cation is based on this dimension only. Prun-
ing the remaining dimensions shows that the same accuracy is obtained using
input dimension 4 only. Note that the better accuracy 100% could be possible
with more dimensions, however, neither LVQ nor RLVQ obtained this accuracy.

Mushroom data: The task is to predict as to whether a mushroom is poi-
sonous or edible depending on 22 symbolic attributes [1]. Unary encoding
of the attributes leads to 8124 patterns of dimension 117. We train LVQ,
RLVQii, and RLVQiii with 6 codebooks and � = 0:05, � = 0:005. LVQ ob-
tains an accuracy of 0:96 on the training and the test set. RLVQ yields a
slightly unstable behavior where the accuracy changes cyclically in the range
from 0:92 to 0:99 on the training and the test set. Pruning the dimensions
with small input weights yields the possibility of pruning about 50 dimensions
for RLVQiii with an accuracy of more than 0:95 and about 80 dimensions for
RLVQii with an accuracy of more than 0:92. The respective dimensions ranked
highest (values �i > 0:1) are dimension 83 in all cases and 1 to 5 of dimensions

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

"meins1"
"meins2"
"meins3"

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

"meins1" using 2:3
"meins2" using 2:3
"meins3" using 2:3

Figure 1: Data sets 1 (left) and 3 (right)

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 271-276

(1; 6; 10; 18; 19; 20; 47; 73; 87; 94; 101). Dimension 83 is identical for all patterns,
hence it is reinforced in each update corresponding to a correct classi�cation
although it does not contribute to the overall classi�cation. Dimension 101
is ranked high in several runs. It corresponds to the attribute `spore-print-
color green'. This attributes allows an accuracy of 0:99 according to [2]. The
other dimensions which are ranked as important comprise instances of various
attributes, some of them ranked as important in the approach [2] as well.

6. Conclusions

We proposed a method to determine the relevance of the several input dimen-
sions of an LVQ architecture during training automatically. For this purpose,
input weights are introduced and adapted to the data with Hebbian learning
based on the error signal. The weights adapt the metric to the data. The in-
duced ranking allows input pruning. The results which we obtained with RLVQ
are either comparable or better than LVQ in particular if a large number of
input dimensions is available. The induced ranking allows us to prune at least
half of the input dimensions without a signi�cant increase of the error.

Training shows instabilities if we deal with noisy data and train codebooks
and weights in common, hence it is advisable to use RLVQii or RLVQi for gen-
eral data sets. This may be partially due to the fact that our training problem
includes the problem of perceptron training which is NP-hard in the presence of
errors. However, even for the noise free case a formal proof of the convergence
of RLVQ would be interesting since the method is based on { but not precisely
equal to { perceptron training. The update rule (**) motivates alternatives
such as a multiplicative update of the input weights. Preliminary results indi-
cate that multiplicative RLVQii (which are not reported in this paper due to
space limitations) shows better performance than additive RLVQ and a more
distinguished ranking of the di�erent input weights. Further theoretical and
experimental analysis of the update rules will be the subject of future work.

References

[1] C.L. Blake and C. J. Merz, UCI Repository of machine learning databases , Irvine, CA:
University of California, Department of Information and Computer Science.

[2] W. Duch, R. Adamczak, and K. Gr�abcweski, Extraction of crisp logical rules using
constrained backpropagation networks, in M. Verleysen (ed.), Proceedings of ESANN'97,
D-facto Publications, 1997.

[3] R. Duda and P. Hart, Pattern Classi�cation and Scene Analysis, Wiley, 1973.

[4] I. Gath and A.B. Geva, Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern
Analysis and Machine Intelligence 11, 773-791, 1989.

[5] D.E. Gustafson and W.C. Kessel, Fuzzy clustering with a fuzzy covariance matrix,
Proceedings of IEEE CDC'79, 761-766, 1979.

[6] K.-U. H�o�gen, H.-U. Simon, and K. VanHorn, Robust trainability of single neurons,
Journal of Computer and System Sciences, 50, 1995.

[7] T. Kohonen, Self-Organizing Maps, Springer, 1997.

[8] T. Kohonen, Learning vector quantization, in M.A. Arbib (ed.), The Handbook of Brain
Theory and Neural Networks, MIT Press, 537-540, 1995.

[9] M. Minsky and S. Papert, Perceptrons, MIT Press, 1988.

[10] P. Somervuo and T. Kohonen, Self-organizing maps and learning vector quantization
for feature sequences, Neural Processing Letters 10(2), 151-159, 1999.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 271-276

