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Abstract. Probabilistic algorithms o�er a means of computing that works with the
grain of analogue hardware, rather than against it. This paper proposes the use of
such an algorithm in applications where the advantages of analogue hardware are most
likely to be realised.

1. Introduction

This paper argues for the exploration of new directions in the development of
arti�cial neural networks (ANNs) in hardware, and presents work on one pos-
sible direction involving analogue hardware.

Software simulations of ANNs are easy to implement, exible, accurate, need
few compromises in design (provided results are not required in real time) and
o�er solutions to many applications.
Hardware versions of these networks, on the other hand, o�er increased power
(parallelism and hence speed) in a reduced space, but at a price. The price is
that they are di�cult to implement, inexible, inaccurate, and require many
compromises in their realisation [1] [2].

For digital hardware, there is no clear application. Although commercially-
available accelerator boards exist, it is arguable that DSPs o�er the same order
of performance and exibility at much less cost, while conventional processors
\catch up" extremely rapidly.
A well-de�ned application for analogue hardware is even harder to establish.
Analogue designs have some potential bene�ts, including low power consump-
tion and increased parallelism. Set against this are some clear disadvantages.
Popular ANN algorithms, developed in software on digital machines, are di�cult
to map onto analogue hardware. Extracting the bene�ts from true parallelism
is not easy, and DSPs can often match, or better, analogue performance.

New directions must be explored in our attempts to draw the di�erent threads
of algorithms, hardware and applications together. However, we can set down
some criteria for what is required. Rather than force existing algorithms to �t
the hardware, we must develop algorithms that exploit the natural character-
istics of hardware. At least for analogue hardware, niche applications are more
likely, involving the processing of raw signals without any intermediate data con-
version. Such an application should make the most of the advantages of analogue
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Figure 1: shows the procedure executed by the learning process. The data fdg presented
to the input layer de�nes the probability fPg of each Expert using Eq.1. This probability
is then sampled fbg (STEP 1) and fed down the network so that a fantasy data vector
ffg is obtained (STEP 2 ). This latest data vector is then fed up the network again in
order to derive to new value fP'g of the experts (STEP 3). Ideally the results obtained
with the original data set fdg and its fantasy vector should be identical. When they are
not, the weights Wij are changed according to Eq. 2

circuitry, namely low power consumption and a high degree of parallelism.

The work presented in this paper meets the criteria for bringing algorithms,
hardware and applications together. The networks in which we are interested,
and their training algorithms, are probabilistic: that is, the inputs to the network
do not set outputs deterministically, but control the probabilities of particular
outputs. Probabilistic models are a useful representation of processes that in-
volve uncertainty, and that is exactly true of analogue hardware. The application
we have in mind { i.e. the recognition of unusual patterns in heartbeat data { is
precisely the kind of applications where small size, low power consumption and
parallelism could be best exploited.

An additional reason for our interest in this work is that we expect it to in-
uence concurrent projects looking at the probabilistic behaviour of transistors,
as processes shrink to deep-sub-micron dimensions.

2. Probabilistic computing

The issue of computation in the presence of uncertainty has attracted consider-
able interest in the last decade. It certainly is of interest for those whose interests
are in implementing ANNs in aVLSI (analogue Very Large Scale Integration).
Uncertainties and non-idealities inherent to VLSI processes a�ect the behaviour
of ANNs on silicon and these e�ects will increase as VLSI device dimensions drop
below 100nm. Probabilistic computing o�ers a new approach for dealing with
uncertainty and extracting useful, relevant information or features from noisy
environments or corrupted data sets. It also o�ers a possible way forward for
performing useful and accurate computation with noisy and ill-matched com-
ponents.
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2.1. Stochastic Networks

Pioneering work by Pearl [3] brought Bayes' mathematical work to bear upon
probabilistic ANNs. This resulted in Bayesian Belief Networks, which proved
powerful, but computationally very expensive.
Bayesian inference was then simpli�ed by introducing stochastic sampling meth-
ods such as Markov Chain Monte Carlo sampling [4] and the BoltzmannMachine
[5]. However, the algorithmic complexity of the above rendered these architec-
tures poor candidates for hardware implementation.
Recently, Hinton introduced the Helmholtz Machine [6], a form of probabilistic
network which proved amenable to VLSI implementation [7]. Since then, Hinton
has developed the Products of Experts (PoE) algorithm [8], which shares some
similarities with the Helmholtz Machine, but has a more reliable and principled
training algorithm. As a result, PoEs show even more amenability to hardware
implementation.

2.2. PoE : Overview

The PoE is an unsupervised, stochastic ANN comprising a set of probabilistic
generative models (\Experts"). The network aims to represent data by a con-
junctive mixture of di�erent individual models. In other words, the probability
density functions (PDF) of the experts (Gaussian, Sigmoidal or other) are mul-
tiplied together, rather than summed [9]. They are then renormalised [8], so
that a global model with a more incisive PDF can be obtained.
The conjunctive nature of the network therefore allows a sharper distribution
to be obtained. Another equally important property that results from these
products is that regions of the data space can be completely, or partially, dis-
carded by some models. In other words, it is acceptable for experts to assign
high probability to an invalid region, as long as at least one other Expert vetoes
it by assigning it a low probability.
This, in turn, is important as it permits simpler and cruder Expert models to
be used, rendering hardware implementation easier.

3. PoE : Some details

3.1. The PoE algorithm

A full explanation of the PoE is given in [10]. Only the �nal results are presented
here. If the experts are binary stochastic units, then the probability of each
neuron being \on" is described by :-

P (Sj = 1) = �(
X

Wij :Si) (1)

where � is the activation function (be it Gaussian, Sigmoidal, etc...), Wij the
synaptic weights of a neuron, Si and Sj the states of the input (visible) and
hidden layers.
The learning is then de�ned by the changes made to the synaptic weights in
order to minimise the \contrastive divergence" - a measure of model quality
based upon one-step reconstructions of the data by the experts. This weight
update is calculated using equation 2.

�Wij = �(< S
+

i S
+

j > � < S
�

i S
�

j >) (2)

where � is the learning rate or step, < S+
i
S+
j
> represents the expectation value

of the products of Si and Sj that results when a data vector fdg is applied to
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the input. Similarly, < S�
i
S�
j

>) represents the expectation value that results

from a fantasy (one-step reconstruction) vector ff g being input.

3.2. Algorithmic simpli�cation

The weight update process (also described in Fig.1) is admirably simple and
amenable to hardware. A small modi�cation could, however, make its aVLSI
implementation even more attractive, with little loss of performance.
Instead of trying to apply synaptic weight change directly, it could be incremen-
ted/decremented by �xed-size steps in the direction of the expectation value.

�Wij = � sign(< S
+

i S
+

j > � < S
�

i S
�

j >) (3)

Therefore a weight only changes by a value of �� or 0. It can be seen from Fig.2
that both solutions converge to a result of equal \quality" (not necessarily the
same results, as the training is stochastic), although the simpli�ed version does
not converge as rapidly.

4. Hardware implementation

Analogue designs are not discussed in detail here (this will be the subject of a
future paper). A simple description of the basic elements needed to implement
the PoE is, however, presented.
Most of the elements required to perform on-chip learning are straightforward.
As eq.3 shows, only multipliers and a subtracter are needed to determine the
weight update. However, the actual operation of weight-modi�cation is more dif-
�cult as a small change must be made to a weight voltage without introducing
extraneous noise or spurious increments/decrements [1]. Our design approach is
to isolate the input weight of the weight-modi�cation circuit so that noise and
coupling do not alter the input weight. To do so the synaptic weight is \copied"
so that a reference weight voltage is obtained. From this reference voltage, two
voltages are derived, one slightly larger and one slightly smaller. Finally, only
one of these two signals is selected and fed back to the input, according to the
learning rule.
The other major element is to introduce stochasticity into the network. There-
fore a binary stochastic neuron (Fig.3) obeying equation 1 is required. The
stochasticity is realised by an asynchronous voltage-controlled oscillator. The
net (\squashed") input to a neuron determines the probability that it is \on".
This probability is represented by a voltage which controls the pulse width:period
ratio of an oscillator. Therefore the probability of neuron activation is encoded
in the duty cyle of the oscillations. Now, when the output waveform of the os-
cillator is sampled, the correct form of probabilistic behaviour results, provided
that the oscillation frequency and sampling frequency are not correlated.

5. Some applications

5.1. Ectopic heartbeat

Cardiovascular diseases, inducing sudden cardiac death (SCD), are a common
cause of mortality. Abnormalities in heart rate signals (in the form of ectopic
heartbeats) are believed to be predictive of SCD. Rapid, on-line detection of
such beats would therefore be a useful diagnostic tool.
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Figure 2: This shows di�erent train-
ing of the experts, (b) shows a training
using eq.2, while (a) is using a simpli-
�ed version, eq.3.
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The advantages of a compact, low power device, directly interfaceable to the
body, that would detect cardiac abnormalities are clear.
Real data, containing 1% of ectopic beats (EB) was used to train a PoE of 6
experts [11]. Therefore, unsurprisingly enough, the PoE models the EB beats
less well than it does the regular beats (Fig.4). Removing EB and artifacts
from the training data set \improves" the results, as the PoE would have no
opportunity to model abnormal signals. In contrast, a large number of experts
and long training times results in the EB being included in the PoE model. In
this scenario, a di�erent approach to novelty detection must be taken, as the
PoE has, e�ectively, become a two-class classi�er, trained with one class (EB)
very under-represented.

5.2. Novelty detection

Once a PoE network is trained and the training disabled, only the type of data on
which the PoE was trained is regenerated well. Data outside the expected regions
is not well modelled. This can be observed in Fig.4 where the PoE does not
produced a good reconstruction of the EB. During training, the reconstruction
error drives weight adjustment. The amount by which the weights change (Eq.2)
is therefore representative of the mismatch between the current datum and the
model and thus the degree of \novelty". Therefore if we were to disable the
training by setting the learning rate (�) to zero, a good indication of \novelty"
would be given by the contrastive divergence i.e. by eq.2 if � was ignored. An
overall novelty signal (Eq.4) can then be obtained by calculating the average
synaptic weight change across the entire PoE.

N =
X

ij

(< S
+

i S
+

j > � < S
�

i S
�

j >) (4)

A set of data containing two EB was presented to the previously-trained PoE of 6
experts. The resulting novelty signal (Fig.5) does, indeed, peak when abnormal
data are present.

6. Conclusion

Probabilistic neural networks are interesting from the perspective of aVLSI for a
number of reasons. A particular stochastic architecture, the Product of Experts,
has been shown to be capable of building good models of some real and arti�cal
data, as well as being amenable to hardware implementation. We have also
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Figure 4: (Left) Signal of a regular heart beat
along with an ectopic heartbeat (Right). The
dashed lines represent the one-step PoE recon-
stitution of the same heartbeats. The large pos-
itive value at time 0 represents a bias value.
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Figure 5: Novelty signal for a
6-Expert PoE, presented with data
containing two ectopic beats.

indicated why an analogue hardware implementation of the PoE is not purely of
academic interest, but has also great potential for speci�c real world monitoring
applications.
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