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Abstract. Support Vector Machines are gaining more and more acceptance
thanks to their success in many real–world problems. We address in this work
some issues related to their hardware implementations for identification and con-
trol of a thermal model of an extruder for injection molding process.

1 Introduction

A regression problem is the process through which an unknown function � : < d !
<, is estimated on the basis of some its samples1 (xi; ti)i=1:::n, xi 2 <d and ti 2
<. Usually, one faces with this problem when is able to observe and measure the
input/output signals of the system under exam, but does not know its dynamic (i.e.,
the structure of � (�)). Typical applications are: time series forecasting, identification
and control of non–linear systems, signals and images processing, etc. The one of
interest in this work is the identification and control of a thermal model representing
an extruder of an Injection Molding Process (IMP) [8]. Briefly, the process consists in
a screw, controlled by hydraulic or electric actuators, which runs in a barrel, and by a
mold, from which the final plastic part is ejected; the barrel is kept at a uniform high
temperature with a simple temperature control; the material is inserted at a solid state
(feed), runs in the heated barrel and melts; then it is injected at a very high pressure in
the mold, where cools down and takes the form of the final part. The cycle time of such
a process can be in the order of seconds, but it depends on the size of the machines. It
is well known that the value of the temperature of the polymeric material at the nozzle
is one of the most critical parameter for final quality of the part; furthermore, it is
very difficult to obtain the function � (�), where Tp, the temperature of the barrel, is
its input, or the control variable, and T , the temperature of the material at the nozzle,
its output.

�Fabio Bardi is with University of Genoa, DIBE, Via all’Opera Pia 11a, 16145 Genova, Italy.
1In the following text we will indicate vectors and matrices with respectively, lowercase and uppercase

bold letters.
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Support Vector Machines (SVMs) [6], are a new paradigm that have been recently
proposed for solving pattern recognition and function approximation tasks. One of
the most appealing properties of SVM is certainly the need of solving a quadratic pro-
gramming problem subject to linear constraints. Briefly, the main goal of �-SV regres-
sion is to find a function ��(�) having at most � deviation from the targets t i for all the
points and, at the same time, as flat as possible (for more details on SVM for regres-
sion see [6]). The function ��(�) is given by ��(x) =

Pn
i=1 (
i � 
�i )K (xi;x) + b.

Where the free parameters are found by solving:

minE(�) =
1

2
�tQ�+ rt� (1)

subjected to the constraints 0 � � � C and �ty = 0. C measures the tradeoff
between the deviation of each target from the function and the flatness of the function
itself;
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dij = dji = K (xi;xj), �i = �;8i, �, r, y 2 <2n, 
, 
� 2 <n; K (�; �) is a kernel
function (i.e. a Gaussian function with variance � 2) [6].

We show here some preliminary results obtained by authors, concerning the hard-
ware realization of intelligent systems for the control of an injection molding process;
thus, the purpose of this paper is twofold: 1) to collect the work published so far and
to sketch some further directions of research on the hardware implementation of SVM
(section 2); 2) to develop physical and thermodynamics models in order to verify the
capacity of learning of SVM when applied to such kind of systems (section 3). In the
end, we give some conclusion in section 4.

2 Analog and digital models for SVM

The hardware implementation of artificial neural networks has always been a very in-
teresting research field for the electronics and computer science communities. The
solutions proposed in the literature are too numerous to be even mentioned here. Af-
ter a seminal work on theoretical aspects of SVM, some attempts at implementing
them on analog or digital hardware have started to emerge [1, 2, 3, 4]. The hard-
ware implementation can be addressed by defining a dynamical system whose stable
point coincides with the solution of (1). If the system is described by a continuous–
time differential equation, it can be implemented in analog hardware using op–amps
as integrators and some linear or nonlinear devices. If a discrete–time approach is
followed, the resulting system can be easily implemented in digital hardware, through
adders, multipliers and comparators and using the time step as the system clock. In the
following we briefly describe both solutions. In a previous work [1], authors proposed
the Chua’s recurrent network [5] to solve the problem of SVMs learning. Briefly, such
a network is based on the use of a penalty function that forces the solution to fulfill
the constraints of the problem. the circuit showed in [1] can be used to solve our
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problem. The penalty function is simply :g (v) = 0 if v > 0, Gv otherwise. The
constraints are written in a matrix form (f (�) = B� � e � 0), where e i = f0; Cg,
BT =

�
�y y �I I

�
, and dim(B) = 2n � n. G is the penalty term to be

setted. Then, as the gain G of the limiters goes to 1, the constraints are satisfied as
desired, otherwise the solution found is only an approximation of the correct one.

A more correct methodology for handling the equality constraint, which exists
only if the bias term is considered, is to build models based on the framework of
the Lagrange Multipliers theory for solving constrained optimization problems. Xia
et. al. have extensively developed this research area, and have proposed different
models for solving such kind of problems. Their main works are [9, 10]. Basically,
the structure of these models, is based on the joined work of two kinds of variables
(also called the neurons of the Neural Network model): the functional variables �,
that is the variables of our problem, lead to the minimum of the cost function, while
the Lagrangian variable � has the role of forcing the solution to stay in the feasible
region. In practice it acts as a force on the dynamic system describing the evolution of
� towards the optimum, in order to impose a path to it in the space of the solutions, in
such a way that it can fulfill the Karush Kuhn Tucker conditions (KKTs) at optimality.
The evolution of the recurrent network is defined by the following system:

�
C�

d�
dt

= (I +Q) (v ��)�m�

C�
d�
dt

= �yTv
(3)

where m� = my, m = yT�, v = P
 (��Q�� e+ y�), and C�, C�, are
the capacitors of the circuit. P
 : <n ! 
 is a projection operator, with 
 =
fv 2 <nj0 � vi � C; 8ig. Note that, differently from the model given previously,
the variables can assume any value during time. That is, it is not important whether
the constraints are fulfilled or not; we are only sure that at the equilibrium the solution
satisfies the KKTs. The above circuit has the structure analogous to the one showed
in [10]. A block diagram of the general architecture of this network, suitable for SVM
learning, is shown in [4]; in such a paper the reader can find an extensive description of
the model; furthermore, we have shown, with simple straightforward considerations
from the KKTs, that the bias term can be easily computed (b = ��); the global
simplification that results from this observation is remarkable with respect to the one
showed in [10].

We have extensively described in [3] some algorithms and architectures for the
digital implementation of SVM. In the following we briefly review some of the most
important models. The digital implementation can completely avoid the penalty func-
tion and realize the 2n inequalities with hard–limiting comparators 2. The following
model describes the updating rule for � values:

zk = �k � �rE (4)

�k+1i = P

�
zki
�

(5)
2This simplifies the learning problem by avoiding the equality constraint in the minimization. The

omission can be very helpful due to unavoidable numerical errors in hardware implementations that prevent
to fully satisfy the equality constraint. On the other hand, SVMs without bias can be used only when the
dimensionality of the feature space is large enough to avoid suffering from the lack of it.
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This updating scheme is particularly attractive for a VLSI implementation thanks to its
simplicity, and because an optimal descent step is given (see [2, 3] for more details).
We can exploit the same model, by adding a penalty term of the form Gjjy � �jj 2 to
the quadratic function, which allows to satisfy the equality constraint (though, really,
only when G ! 1). The recurrent relation is then modified by substituting Q with
QG = Q+GY = Q+GyyT .

3 Identification and control of the IMP

An unknown non–linear dynamic system can be controlled by using the well known
identify + control scheme [7] (see figure 1). The identification is realized by an intel-
ligent system (i.e. a Support Vector Machine), that is able to learn and to emulate, the
system to be controlled through some its input/output (i/o) samples. The controller, de-
signed on the basis of the parameters of the identification block (IB), permits the track-
ing of the desired reference r. The discrete–time i/o relationship of the system is repre-
sented by: tk+1 = � [t (k) ; � � � ; t (k � n+ 1) ; u (k) ; � � � ; u (k �m+ 1)] = � (xk),
� (�) is unknown, n+m = d, and the sample time �� is given. If � (�) represents the
injection molding process previously described, tk is the temperature of the material
at the nozzle, and uk the temperature of the heater; � (�) is the unknown function to
be estimated by the learning system, in our case an SVM. The output of the SVM will
be of the form t�k+1 = �� (xk). In order to verify the capacity of the SVM of learning
the dynamic of the injection molding process, and to build and test the structure of
the whole control system, we have built a simplified thermal model of the extruder,
which is able to simulate the relationships among the different magnitudes of the sys-
tem; furthermore, following such approach, we have an automatic source of samples
(xi; ti) to design the SVM. Such a model will be extensively described in a paper that
we are writing, here we focus on the design of the controller, as the IB can be designed
following the specifications provided in the previous section. Let us consider the con-
trol scheme of figure 1. The controller provides the temperature of the heater u, in
such a way to minimize e, on the basis of the structure of the IB (the analytic expres-
sion of � (�) is supposed to be unknown). The idea is quite simple, and follows this
principle [7]: let us define the cost J = 1

2e
2 (k + 1) = 1

2 [r (k + 1)� t� (k + 1)]
2.

The goal is to minimize J ; this leads to the definition of the following control law:
u (k + 1) = u (k) � �c

@J
@u(k) , where �c is a descent step to be set. It can be easily

shown, that if a Gaussian kernel is supposed to be used, the control block has the
following structure:

u (k + 1) = u (k) +
�c

�2
e (k + 1)

X
i

(
i � 
�i ) (xi � x)n+1 e
�
kxi�xk2

2�2 (6)

(xi � x)n+1 indicates the component n+ 1 of the vector (x i � x). Analogous laws
can be found by using different kind of kernel functions. Figure 2 shows the re-
sult of an experiment; the reference r was set to 466.3 and 468 [K] Kelvin degree,
respectively; we also used a sample time of 0.2 sec, a descent step of �c = 0:8 and
�2 = 0:02.
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Figure 1: A typical identify–control scheme
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Figure 2: Control signal, system (model) and SVM outputs for r = 466:3 and r = 468
Kelvin degree.
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4 Conclusion

This work collects some results obtained by authors about analog and digital models
suitable for the hardware implementation of SVMs. Obviously, more work has to
be done concerning the actual circuital implementation, in particular more work has
to be addressed towards the search of optimal models for the digital implementation
with bias. We have briefly described a real–world application that can benefit of such
realizations: the temperature control of an injection model process; this is a typical
application where a real time response is often necessary, so the intelligent hardware
described in this paper could help to obtain the required performances.
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